Neutron and Charged Particle Data Needs for NIF Experiments

Charles Cerjan

Nuclear Data Needs and Capabilities for Applications

Lawrence Berkeley National Laboratory

May 28, 2015

Lawrence Livermore National Laboratory

LLNL-PRES-670924

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Overview

Nuclear physics data is essential to characterize ignition-relevant implosion experiments.

- Accurate temperature dependent fusion reactivity for light ions is of primary importance to describe thermonuclear burn.
 - D(t, α)n, T(t, α)2n, D(d,t)p, D(d,³he)n, D(³he, α)p
 - DT, T₂, D₂, THD and D³He gas fills are all used.
- Energy loss of fusion-generated alpha particles in hot dense plasmas must be accurately assessed (engine of ignition).
 - Radiochemical neutron activation and neutron time-of-flight diagnostics validate stopping power models.
- Diagnostics for degraded implosion performance.
 - Xe dopants to probe ablation front instabilities.
 - Br(d,2n)Kr to probe ablator/cold fuel and ablator/hot core mix.
 - Alpha particle induced reactions to probe hot core mix.

Nuclear physics data is essential to characterize ignition-relevant implosion experiments.

- Gamma-ray diagnostics for performance and ablator/fuel instabilities.
 - Total yield from DT-fusion γ branching ratio at 17.6 MeV.
 - ¹²C(n,n'γ) 4.4 MeV time-integrated emission provides hydrocarbon areal densities (remaining mass).
 - Cross section at 14 MeV must be accurate.
 - Does ¹³C(n,n' γ) have strong emission near 4 MeV?
 - If not, then a useful mix diagnostic is possible.
- Solid Radiochemistry Diagnostic (SRC) is currently a NIF diagnostic complementary to ¹²C-γ GRH detection (CH ρr).
 - Ratio of ¹⁹⁸Au/¹⁹⁶Au from the activated hohlraum.
 - $(n,\gamma)/(n,2n)$: low energy neutrons/14 MeV neutrons.
- Fission product distribution experiments are not discussed.
 - Capsule dopant and hohlraum foil placement.

Qualitative description of an implosion experiment

- Indirect drive assumed throughout this discussion.
- Temporally and spatially shaped laser deposition onto hohlraum wall produces temporally and spatially varying x-ray drive.
- Ablator mass is ejected; shocks form and propagate; isentropic condition at peak implosion velocity on a low adiabat.
- Transfer of incoming shell kinetic energy to PdV work on the capsule interior which leads to temperatures sufficiently large to initiate fusion reactions.
- Ignition requires the generation of a propagating burn wave into the DT fuel by the stopping of fusion alpha particles in the hot core.
- Temperature rise also leads to pronounced increase in energy losses due to Bremsstrahlung and electron conduction.
- Balance between energy production (fusion reactions) and loss mechanisms characterizes the implosion performance.

Summary of neutron yields from DT-cryogenic implosions versus measured ion temperature.

The high foot laser drive sacrifices compressibility for yield compared to the low foot laser drive.

This drive produces consistently smaller fuel densities but higher ion temperatures.

Plot courtesy of Pravesh Patel

NI

Fusion reactivity and reaction-in-flight processes must be modeled accurately.

- Light ion thermonuclear fusion reactivity parameterized as a function of temperature is necessary.
 - Accelerator experiments sample higher energies than ICF relevant energies and many reactivities are not available.
 - Example: ⁵He resonance controversy in TT (Casey et al. PRL 2012; Sayre et al. PRL 2013)
 - ENDL parameterization.
 - Caughlan-Fowler parameterization (1988).
 - Specialized theoretical fits (Bosh-Hale).
 - Ab initio results are desirable.
- Cross sections for many in-flight reactions are needed to model neutron implosion spectra.

DT Ignition

Fusion, Elastic Scatter, and In-Flight Reactions Explain the Data

- ► The complete set of physics
 - ▶ Unscattered DT, DD, TT.
 - Unscattered ${}^{2}_{1}H(n, 2n)$, ${}^{3}_{1}H(n, 2n)$, and ${}^{12}_{6}C(n, n2\alpha)$.
 - Singly, doubly, and triply scattered neutrons.
- ▶ DSR: 7.40%[7.40%]
- ▶ #(2–13 MeV): 1.26 × 10¹⁶ [1.26 × 10¹⁶]
- The model and calculated spectra now match well above 1 MeV. Below this, multiple scattering events dominate.
- Including all aspects of this model explains the experimentally observed data.

Slide courtesy of S. Sepke

DT Ignition Twelve non-Fusion Reactions Generate Neutrons

Twelve in-flight nuclear reactions generated neutrons in the simulation in addition to the DD, DT, and TT reactions.

Number of Escaped Neutrons Between 1 and 10 MeV					
${}^{2}H(n,2n)$	$4.87 imes10^{14}$	²⁸ Si(n, np)	$1.27 imes10^{11}$		
$^{12}C(n, n2\alpha)$	$3.40 imes10^{13}$	$^{29}Si(n,2n)$	$1.17 imes10^{11}$		
${}^{3}H(n,2n)$	$2.25 imes10^{13}$	$^{2}H(p,pn)$	$8.06 imes10^{10}$		
$^{13}C(n, 2n)$	$1.14 imes10^{12}$	³⁰ Si(n,2n)	$6.92 imes10^{10}$		
³ H(p, n)	$8.86 imes10^{11}$	$^{28}Si(n,nlpha)$	$4.04 imes10^{10}$		
$^{16}O(n,nlpha)$	$3.32 imes 10^{11}$	$^{3}He(t, np)$	$3.21 imes 10^{10}$		

Notice that in this capsule ${}^{2}H(n, 2n)$, ${}^{3}H(n, 2n)$, and ${}^{12}C(n, n2\alpha)$ generated a number of neutrons on par with the DD and TT fusion reactions: 5.84×10^{13} and 5.15×10^{13} , respectively.

Comparison of DT fusion rates Experimental data at high deuteron energies only

Comparison of DT fusion rates Different fits lead to 15% relative variation

Different alpha particle stopping power models have reaction-in-flight neutron spectral signatures. Observable?

Neutron Spectra

Lawrence Livermore National Laboratory

Selected NIF neutron spectra with (n,xn) detector thresholds and cross sections Slide courtesy of E. Henry

Neutron spectra from Cerjan; thresholds from NNDC

Cross sections for Bi, C, and O are estimates

Nuclear reaction signatures for cold shell mix diagnostics are programmatically important.

- X-ray emission diagnostics are typically used to quantify cold material mix into the hot core.
 - This approach is essentially limited to the hot (emitting) regions.
- Neutron and charged particle reactions are not limited to the hot core region.
 - The relevant (n,2n), (p,n), (d,2n) and (t,3n) cross sectional data is needed.
 - Examples: 124 Xe(n,2n) 123 Xe and 79 Br(d,2n) 78 Kr detected with RAGS.
 - TUNL data for ¹²⁴Xe acquired (Bhike, Phys. Rev. C 2015).
 - Possible validation with x-ray spectroscopy.
- Xe-doped SymCap experiments ready to be fielded in FY15/FY16.
 - Two regions of a CH/Si SymCap have been doped with ¹³⁶Xe (outer region) and ¹²⁴Xe (inner region) by D. Hoover (GA) and S. Kucheyev (LLNL).
 - In-line radiochemical simulations in HYDRA predict a small ratio of the (n,2n) activation products ¹³⁵Xe/¹²³Xe due to ablative stabilization.
 - First experimental test of this prediction.
 - Demonstration of RAGS capability with neutral atom AMS detection.

Xe isotope tracers will measure the amount of ablator penetration into the fuel and identify its location in the ablator. Accurate (n,2n) cross sections are needed.

 spot at bang time; the 14 MeV neutron fluence (neutrons/cm²) and consequent (n,2n)
interactions it experiences will be low; so the
¹³⁵Xe activation level detected by RAGS will be
low compared to the inner ¹²³Xe activation level The outer tracer, ¹³⁶Xe, will be closer to the hot spot, the 14 MeV neutron fluence (neutrons/cm²) and consequent (n,2n) interactions it experiences will increase, so the ¹³⁵Xe activation level detected by RAGS will increase compared to the inner ¹²³Xe activation level

Lawrence Livermore National Laboratory

14 LLNL-PRES-xxxxxx

Detection of DT-fusion α reactions would provide a direct test of shell material mixed into the hot core.

Q-Thresho The ¹⁰B(α ,n)¹³N reaction Value ld Coul. Bar. Half Life Radiatio Chem. (MeV) Target Product (MeV) (MeV) (s) Form n has nearly the best 6Li 9**B** -3.986.62 1.6 8.00E-19 Solid p,2a energetics Solid, 12C Gas? ⁹Be 5.70 0.00 2.0 Stable 13N 1.06 0.00 2.4 10**B** 598 β+ Gas The half-life is 12C 15**O** -8.50 11.34 2.8 122 β+,e Gas reasonable -4.35 14N 17**F** 6.09 3.2 65 β+ Gas 16**()** ¹⁹Ne -12.14 15.17 3.5 17 $\beta + \gamma$ Gas 19**F** ²²Na -1.95 2.36 3.8 8.22E+07 β +,e, γ Solid The product is a gas ²⁰Ne ²³Mg -7.22 8.66 4.2 11 $\beta + \gamma$ Solid ²³Na 26AI -2.973.48 4.5 2.27E+13 Solid β +,e, γ The decay mode is not ²⁴Ma 27Si -7.20 8.40 4.8 Solid 4 $\beta + \gamma$ 27AI 30P -2.643.03 5.1 150 Solid β +,e, γ distinctive

Candidate (*a*,*n*) detector materials

National Nuclear Data Center

• diborane (B_2H_6) is a gas

Slide courtesy of E. Henry.

Ablator-cold shell mix diagnostic using ${}^{12}C-\gamma$ 4.4 MeV emission from a buried layer ${}^{12}CH$ layer in a ${}^{13}CH$ capsule.

Physics Goal- (1) demonstrate lack of n-induced γ signal from ¹³C (as compared to strong 4.44 MeV ¹²C (n,n')γ). (2) If true, ¹²C buried layers in ¹³C-based HDC (or CH) capsules could be used to infer origin of C mix through GRH ρR measurements (and eventual imaging). Can combine with Xe &/or Ge-doping.

Experimental concept

- Expose ¹³C & ¹²C pucks to n-flux at OMEGA and measure γ's with GRH & Super GCD. Continue if >10x difference at ~3 MeV threshold.
- Implode pure ¹³C capsule on NIF for Hohl/TMP bkgnd
- Then ¹²C layers buried in ¹³C capsules to infer Mix origin

¹²C has a large σ (n,n' γ_1) producing the 4.44 MeV γ

Lawrence Livermore National Laboratory

http://www.nndc.bnl.gov/exfor/serviet/E4sSearch2

Corresponding ¹³C data is required. ENDF doesn't list σ for ¹³C(n,n'), and (n, γ) is exceedingly small (<0.1 mb). Correct?

N140511 (high foot) low energy neutron spectrum Characterization requires (n,γ) capture cross sections (SRC diagnostic).

Total yield = 7.4×10^{15}

Experimental characterization of the thermalized neutron spectrum is necessary for capture reactions. Diagnostic information available but not currently understood.

1.0E-02

Energy (MeV)

1.0E-01

1.0E+00

1.0E+01

1.0E-05

1.0E-04

1.0E-03

1.0E+14

1.0E+13

1.0E+12

1.0E+11

1.0E+11
pertron Number (#)
1.0E+10
1.0E+09

1.0E+08

1.0E+07

1.0E+06

1.0E-06

1.0E+02

Acknowledgements

Nuclear Physics

- L. Bernstein, R. Bionta, D. Bleuel, J. Caggiano, D. Casey, D. Fittinghoff,
- G. Grim, R. Hatarik, A. Hayes (LANL), E. Henry, H. Herrmann (LANL),
- J. Knauer (LLE), F. Merrill (LANL), D. Sayre, D. Shaughnessy, W. Stoeffl,
- A. Tonchev, J. Wilhelmy (LANL), C. Yeamans

HYDRA

M. Marinak, M. Patel, S. Sepke

BACKUP

CH(Si) THD Design v3.3 (from Haan 8/15/11, updated 9/28/11, densities updated 9/13/11)

(all dimensions and densities at cryogenic temp)

Inner CH radius = 935 (\pm n/a) um Outer radius = 1130 \pm 5 um Wall 195 \pm 3 um CH density(cryo) = 1.034 +0.025*Si% +0.029*Ox% Densities below assume 0.5 at% oxygen Thermal contraction taken to be 1/1.0127

Layer	Thickness (um)	Si dopant (at%)	Cryo density (g/cc)
1 (inside)	6±2	Nominally 0, req't <0.1	1.049
2	6±2	1±0.2	1.074
3	35±2	2±0.2	1.099
4	10±2	1±0.2	1.074
5 (outside)	(balance)	Nominally 0, req't <0.05	1.049

CH(Si) Symcap Design v3.2 (from Haan 7/1/11, densities updated 9/13/11) (all dimensions and densities at cryogenic temp)

Gas nominally 6.62 mg/cc

70:30 (at.) ³He:D

Inner radius = 928 (\pm n/a) um Outer radius = 1137 \pm 5 um Wall 209 \pm 3 um CH density(cryo) = 1.034 +0.025*Si% +0.029*Ox% Densities below assume 0.5 at% oxygen Thermal contraction assumed to be 1/1.0127

Layer	Thickness (um)	Si dopant (at%)	Estimated density (g/cc)
1 (inside)	20±2	Nom. 0, req't <0.1	1.049
2	6±2	1±0.2	1.074
3	35±2	2±0.2	1.099
4	10±2	1±0.2	1.074
5 (outside)	(balance)	Nom. 0, req't <0.05	1.049

Higher neutron yield with larger DT fuel areal density provides a wider neutron spectral range.

- High foot laser drive with a conventional CH ablator capsule represents an improvement upon the performance of the Symcap platform.
 - Stable, repeatable platform with $\sim 5 \times 10^{15}$ neutrons in 150 ps.
 - Higher doping levels possible (?).
 - Dopant loading during fabrication must be demonstrated.
- High energy neutron spectrum (> 14 MeV)
 - Reaction-In-Flight (RIF) neutrons populate this energy range.
 - Stopping power experiments require larger neutron yields to reduce experimental uncertainties.
- Thermalization neutron spectrum (< 1 MeV)
 - Larger DT areal densities required to produce sufficient low-energy signal.
 - SRC diagnostic probes this energy range and provides late-time ablator areal density and remaining shell temperature dependence.
 - Low Energy Neutron Spectrometer (LENS) would be very desirable.

N140511 (high foot) high energy neutron spectrum

Total yield = 7.4×10^{15}

N140511 (high foot) escaped protons from n-p scattering in the remaining CH ablator.

Total yield = 2.5×10^{13}

N140511 (high foot) γ-ray spectrum dominated by ¹²C(n,n' γ) scattering.

Total ¹²C- γ yield = 2.0 x 10¹³

Lawrence Livermore National Laboratory

HYDRA (very briefly)

- The primary implosion experiment simulation tool used for NIF experimental design and analysis.
 - ALE (Adaptive Lagrange-Euler)
 - Finite element based (quadrilateral in 2D or hexahedral elements in 3D)
 - Massively parallel
 - PYTHON user scripts may be readily linked.
- Physics capabilities are extensive.
 - Consistent numerical treatment of the hydrodynamic equations, diffusive radiation transport, and diffusive electron conduction.
 - Substantial flexibility exists for different EOS and conductivity model choices.
 - Implicit Monte Carlo photon transport.
 - Particle Monte Carlo neutron, charged particle, and gamma-ray generation and transport.
 - In-line or post-processing radiochemistry available (KUDU).
- A static three-dimensional model exists that correlates implosion diagnostics and quantifies the stagnation properties.

Noteworthy nuclear physics-based capabilities at the NIF not discussed.

Proton Time-of-Flight (pTOF)

- Fielded and analyzed by Hans Rinderknecht/MIT.
- Shock flash bang time in D/³He gas fills.

Wedge Range Filters (WRF)

- Fielded and analyzed by Alex Zylstra/MIT
- Capsule areal density at shock flash bang time in D/³He gas fills.

Both techniques probe charged particle stopping power.

• Both are limited to low areal densities currently.

