High-Energy, Beta-Delayed Gamma-Ray Spectroscopy Experiments

Bernhard Ludewigt

Workshop on Nuclear Data Needs and Capabilities for Applications

May 27 – 29, 2015

NDNCA Workshop, B. Ludewigt, May 2015

Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

NDNCA Workshop, B. Ludewigt, May 2015

Delayed Gamma-Ray Experiments

At IAC

Photo-neutron source, 15 MeV Electron LINAC

Targets: U-235, Pu-239, Pu-241, DU, Combined

Data sets for several irradiation/spectroscopy cycles:

- 15 min/30 min (multiple passes to increase statistics)
- Many cycles: 5 min/5 min, 90 sec/90 sec, 60 sec/60 sec, 10 sec/10 sec

At OSU

TRIGA reactor, pure thermal neutron beam

Targets: U-235, Pu-239, DU

Irradiation/spectroscopy cycles: 10/10 sec, 1/1 min, 10/10 min

Comparison of ²³⁹Pu, ²³⁵U spectra collected for 90s/90s irradiation/spectroscopy cycle.

Significant differences between ²³⁵U and ²³⁹Pu for a number of lines: Strong ²³⁵U indicators include ⁹⁰Rb + ^{90m}Rb with half-lives of 2.6 and 4.3 min, ⁹¹Rb, $t_{2}^{1/2}$ = 58.4 s. Strong ²³⁹Pu indicator: ¹⁰⁶Tc, $t_{2}^{1/2}$ = 36 s

⁹⁵Y, $t\frac{1}{2}$ = 10.3 min, is strong in both spectra and important.

Measured Delayed Gammas from ²⁴¹Pu

The ²⁴¹Pu/²³⁹Pu ratios of prominent peaks vary between 1.2 and 0.5.

Relative Delayed Gamma-Ray Yields from ²⁴¹Pu, ²³⁹Pu

Integrated discrete delayed γ -ray yields from the ²⁴¹Pu and ²³⁹Pu targets. (Prel. Data)

Discrete γ-ray	²⁴¹ Pu Discrete	²³⁹ Pu Discrete γ-ray	²⁴¹ Pu/ ²³⁹ Pu	2 ⁻¹³							
energy	γ-ray yield	yield		۷		¹⁰⁶ Tc				_	
(keV)	(nC ⁻¹ ·g ⁻¹)	(nC ⁻¹ ·g ⁻¹)		o -14		9 keV				e< ⁹⁵	
2783 – ⁹¹ Rb	(7.8±0.7)×10 ⁻⁶	(7.9±0.7)×10 ⁻⁶	1.0	\sim	-	■278;		¹⁰⁶ Tc	2	576 k	R
2789 – ¹⁰⁶ Tc	(4.60±0.09)×10 ⁻⁵	(3.92±0.09)×10 ⁻⁵	1.2	- σ ₋₁₅	0		v ev	keV	2	ਲੇ 	ieV ⁹¹
2851 – ^{99m} Nb	(1.74±0.08)×10 ⁻⁵	(2.15±0.08)×10 ⁻⁵	0.8	-2°	/ ¹⁰⁶ T	100	1007	3186	-		600 k
2869 – ¹³⁶ I	(1.32±0.07)×10 ⁻⁵	(1.17±0.07)×10 ⁻⁵	1.1) (U	7 ke/				an B		
3186 – ¹⁰⁶ Tc	(2.23±0.07)×10 ⁻⁵	(1.90±0.07)×10 ⁻⁵	1.2		■ 277	-	-		keV	ب	
3317 – ^{90m} Rb	(8.8±0.6)×10 ⁻⁶	(1.90±0.07)×10 ⁻⁵	0.5	Yie	•		¹³⁶	2	3383	eV ⁸⁹	
3383 – ⁹⁰ Rb	(5.2±0.6)×10 ⁻⁶	(8.0±0.6)×10 ⁻⁶	0.65	2 ⁻¹⁷	-) keV	-	Ē	533 ke	
3533 – ⁸⁹ Kr	(3.9±0.4)×10 ⁻⁶	(5.1±0.5)×10 ⁻⁶	0.76		۷ ⁹¹ R		2869		Ŧ	[₩] ²³⁹ Pı	I
3576 – ⁹⁵ Y	(2.62±0.06)×10 ⁻⁵	(3.81±0.07)×10 ⁻⁵	0.69	2 ⁻¹⁸	33 ke ⁾					¹ ²⁴¹ Pi	
3600 – ⁹¹ Rb	(1.33±0.05)×10 ⁻⁵	(2.05±0.06)×10 ⁻⁵	0.65	_	278					Г	4

Determination of Fission Yields from Timedependent Delayed Gamma-ray Data

 Physical model: Systems of decaying isotopes produce time-varying spectral peaks & background

 7e-06

 measured counts in 10 s interval + model amplitude

Independent fission yields, parameters in the model, are found by fitting the experimental time-energy data using a maximum-likelihood estimation method.

LW Campbell, PNNL-SA-99655

NDNCA Workshop, B. Ludewigt, May 2015

Fitted ²³⁵U Fission Yields

Fitted ²³⁵U fission yields (orange) extracted from delayed gamma-ray measurements between 2.8 and 3.4 MeV normalized to the cumulative ⁹⁵Y yield and ENDF/B-VII data library values (blue line).

²³⁵U Delayed Gamma-ray Spectrum Calculated with Fitted Fission Yields

- Black: measured.
- Yellow: calculated based on ENDF/B-VII data libraries.
- Red: calculated based on the fitted fission yields.

- More data sets needed to be fitted to improve the accuracy of the extracted fission yields.
- Also ²³⁹Pu and ²⁴¹Pu.
- Experimental data available Prof. Alan Hunt, ISU

Physical model

 Systems of decaying isotopes produce timevarying spectral peaks & background

Determine set of fission yields that reproduces observed data

- Have preliminary fits for certain spectral regions.
- Single and double escape peaks included in analysis.

Preliminary best-fit relative fission yields for U-235 thermal fission (normalized to cumulative yield of Y-95 = 0.064)

Se 85	0.007691	+/-	0.00049
Se 87	0.008732	+/-	0.002671
Br 87	0.006921	+/-	0.003191
Br 88	0.015212	+/-	0.001169
Kr 89	0.023941	+/-	0.001884
Rb 89	0.005172	+/-	0.002859
Rb 90 M	0.012803	+/-	0.001086
Rb 90	0.036539	+/-	0.000603
Rb 91	0.045594	+/-	0.000441
Rb 92	0.005367	+/-	0.007878
Rb 93	0.026013	+/-	0.000965
Sr 95	0.040862	+/-	0.001605
Y 95	0.022825	+/-	0.001804
Y 97	0.020542	+/-	0.002252
Tc 106	0.009858	+/-	0.002155
Te 135	2.85E-08	+/-	2.19E-05
l 136	1.84E-07	+/-	5.33E-05
l 137	0.019238	+/-	0.002389
l 138	0.028651	+/-	0.005515
Xe 139	0.086401	+/-	0.051444
Cs 139	0.051121	+/-	0.054131
Cs 140	0.059973	+/-	0.003645
La 142	0.050324	+/-	0.002785
La 144	1.31E-10	+/-	7.99E-07
Ba 145	1.29E-06	+/-	0.000161