Nuclear excitation with zeptosecond multi-MeV laser pulses

Adriana Pálffy and Hans A. Weidenmüller
Max Planck Institute for Nuclear Physics, Heidelberg, Germany

Nuclear Fusion: From NIF to the Stars

San Francisco, August 11th, 2014
New experimental developments ...

Experimental promise of coherent MeV photons!

Challenge: the theory of laser-induced nuclear reactions

ELI beam (intense & optical) \(\rightarrow\) thin Carbon foil \(\rightarrow\) electron sheet

Compton backscattering of another laser

Mono-energetic & tunable γ-ray beam (unlike bremsstrahlung)

G. Mourou and T. Tajima, Science 331 (2011) 41
Far from yrast

Angular momentum

Dipole absorption $J \sim \sqrt{N}$

Energy

Photoexcitation

Hundreds of MeV above yrast!

Heavy ion collisions

absorbed photons

Angular momentum
Nuclear excitation mechanism

ELI photons
- $N > 10^3$
- $E \sim 10\text{ MeV}$
- $T \sim 10^{-19}\text{ s}$

PERTURBATIVE
Giant Dipole Resonance once or twice

QUASIADIABATIC
Compound nucleus equilibrates about as fast as it is excited

STRONGLY NON-ADIABATIC
Nucleus evaporates by multiple nucleon emission
Nuclear excitation mechanism

ELI photons
- \(N > 10^3 \)
- \(E \sim 10 \text{ MeV} \)
- \(T \sim 10^{-19} \text{ s} \)

PERTURBATIVE
Giant Dipole Resonance once or twice

QUASIADIABATIC
Compound nucleus equilibrates about as fast as it is excited

STRONGLY NON-ADIABATIC
Nucleus evaporates by multiple nucleon emission
Competing channels

PHOTOEXCITATION creates particle-hole pairs

RESIDUAL INTERACTION nucleon-nucleon interaction redistributes energy
Competing channels

Quasiadiabatic regime – after each absorption, nucleus equilibrates!!!

PHOTOEXCITATION
creates particle-hole pairs

RESIDUAL INTERACTION
nucleon-nucleon interaction redistributes energy
Competing channels

PHOTOEXCITATION creates particle-hole pairs

INDUCED PHOTOEMISSION
particle-hole recombination and photon emission
Competing channels

PHOTOEXCITATION creates particle-hole pairs

NEUTRON EVAPORATION after several absorbed photons

Bye bye and thanks for all the fish!!!
Competing channels

PARTICLE EMISSION
single nucleons reach the continuum

NEUTRON EVAPORATION
after several absorbed photons

Bye bye and thanks for all the fish!!!
Competition channels

Bye bye and thanks for all the fish!!!

PARTICLE EMISSION
single nucleons reach the continuum

NEUTRON EVAPORATION
after several absorbed photons
Competition channels

Bye bye and thanks for all the fish!!!

PARTICLE EMISSION
single nucleons reach the continuum

NEUTRON EVAPORATION
after several absorbed photons
Competing channels

Bye bye and thanks for all the fish!!!
Quasiadiabatic regime

Assume complete nuclear equilibration between two photon absorptions

Effective absorption rate of an equilibrated compound nucleus

\[(N\Gamma)_{\text{eff}}(E) = N\Gamma_{\text{dip}} \rho_{\text{acc}}(E) / \rho_{\text{acc}}(E_g)\]

COMPETING WITH

- Induced dipole emission
 \[(N\Gamma)_{\text{ind}}(E) = (N\Gamma)_{\text{eff}}(E) \rho_A(E - E_L) / \rho_A(E)\]

- Induced nucleon emission
 \[(N\Gamma)_{\text{cnt}}(E) = N\Gamma_{\text{dip}} \rho_{\text{cnt}}(E) / \rho_{\text{acc}}(E_g)\]

- Neutron evaporation
 \[
 \Gamma_n(E) = (2\pi)^{-1} \int_{E_g(A-1)}^{E-E_n} \text{d}E' \rho_{A-1}(E') / \rho_A(E)
 \]

- Fission
 \[
 \Gamma_f(E) = (\hbar\omega_1 / (2\pi)) \exp\left\{-E_f \text{d} \ln \rho_A(E) / \text{d}E\right\}
 \]
Level densities needed!

New theoretical formalism for high energies and high particle-hole numbers!

Shell model with finite number of bound states
A spinless non-interacting fermions distributed

\[\rho_p(E, J, \pi) = \frac{1}{2} \rho_p(E) \frac{2J + 1}{2\sqrt{2\pi} \sigma_{2p}^3} \exp \left\{ - \frac{(J + (1/2))^2}{2\sigma_{2p}^2} \right\} \]

STEP I: CONSTANT SPACING MODEL

“Corrected” Gaussian, 2nd, 4th, and 6th moments

Level densities

More realistic case, level spacing linear or quadratic in energy

![Graph showing level densities](image)

$$\rho_1^{(1)}(\varepsilon) = \frac{2A}{F^2} \varepsilon$$
$$\rho_1^{(2)}(\varepsilon) = \frac{3A}{F^3} \varepsilon^2$$

Shift in energy
Slight asymmetry
Narrower width

AP and H. A. Weidenmüller

Density of accessible states - Fermi gas model
Comparison

\[\rho_1^{(1)}(\varepsilon) = \frac{2A}{F^2 \varepsilon} \]

\[A = 100 \]

\[N\Gamma_{\text{dip}} = 5 \text{ MeV} \]

\[\rho_1^{(2)}(\varepsilon) = \frac{3A}{F^3 \varepsilon^2} \]

\[A = 200 \]

AP and H. A. Weidenmüller

!!! At maximum of level density, photon absorption and emission are equally probable!!!
$\rho_1^{(1)}(\varepsilon) = \frac{2A}{F^2 \varepsilon}$

$A = 100$

$N\Gamma_{\text{dip}} = 5 \text{ MeV}$

$\rho_1^{(2)}(\varepsilon) = \frac{3A}{F^3 \varepsilon^2}$

$A = 200$

AP and H. A. Weidenmüller

!!! At maximum of level density, photon absorption and emission are equally probable!!!
Comparison

Emission of slow neutrons feeds states of similar energy in the daughter nuclei.

Nucleon emission – p or n - details depend on exact binding energies and absorption rates.

For a 50 zs pulse, proton-rich reaction products – FAR FROM STABILITY

AP and H. A. Weidenmüller
Conclusions

- nuclear excitation with a multi-MeV zs coherent laser pulse
- Quasi-adiabatic regime 1 photon absorbed / nuclear relaxation time leads far from yrast and far from stability!!!
- End of reaction chain determined by duration of laser pulse – 50 zs
- proton-rich nuclei due to strong neutron evaporation

nuclear reaction theory + newly developed method for nuclear level densities

AP and H. A. Weidenmüller

AP and H. A. Weidenmüller