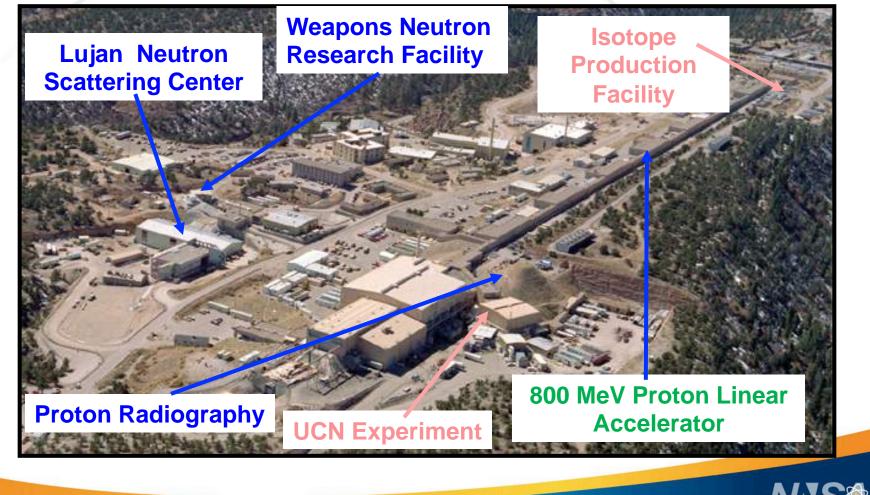


Los Alamos National Laboratory Facility Review

Ron Nelson P-27 & LANSCE

Neutron Data Needs & Capabilities for Applications LBNL 27 May 2015

Los Alamos Neutron Science Center User Facilities



- Los Alamos Neutron Science Center (LANSCE)
 - Driver 800 MeV proton linac
 - Beams multiple (H⁺, H⁻)
 - Protons: 200 to <u>800</u> MeV
 - pRad, Blue Room, Area A (planned)
 - Moderated Neutrons: cold to 1 MeV
 - Lujan Center 15 flight paths (3 nuclear science)
 - Unmoderated Neutrons: 0.1 to 600 MeV
 - WNR facility 6 flight paths
 - Not included Isotope Production Facility, Ultra Cold Neutrons (collaboration)

LANSCE is a Unique Multidisciplinary Facility for Los Alamos Science and Technology - User Facility Areas

Website http://lansce.lanl.gov/

• Los Alamos NATIONAL LABORATORY

Slide

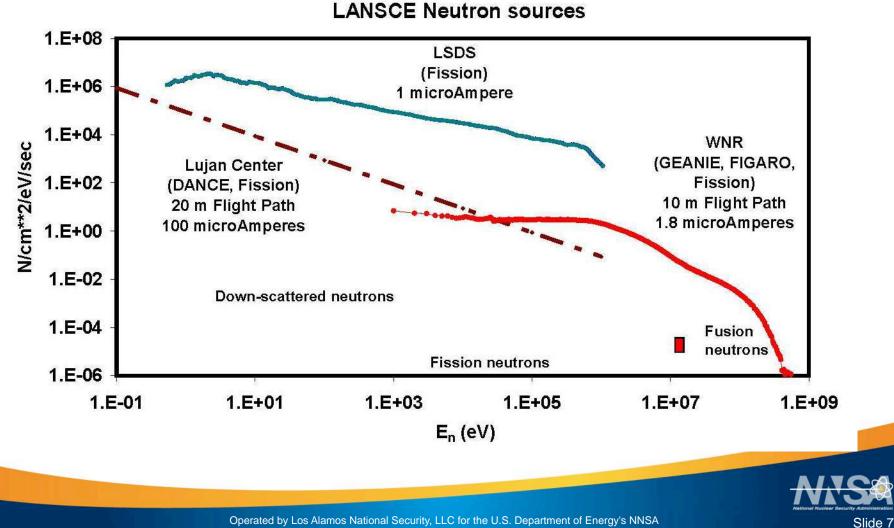
Beam structure

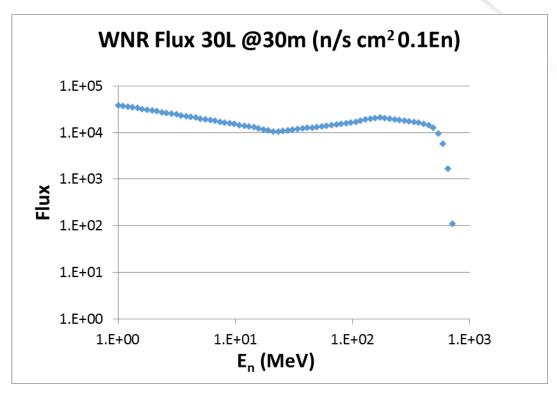
- WNR Target 4
 - 100 Hz, 625 μs maco pulse, 1.8 μs spacing typical, of sub-ns (FWHM) proton pulses
- Lujan Center Target 1
 - 20 Hz, ~130 ns (FWHM), proton pulses from the proton storage ring (PSR)
- Blue Room Target 2
 - From a single proton pulse to pulse trains of 80 nA avg current, or PSR pulses

New 2.5 MW RF driver amplifiers are Los Alamos being installed on the drift-tube linac

Figure 3: Dual FPAs with Diacrodes[®] installed

Figure 2: Coaxial feeders from PAs to branch hybrid


Two main neutron production targets are used


- WNR Target 4 high energy spallation neutrons
 - Bare W cylinder water cooled
 - Operates at 4 μA typical, 34k/s sub-ns pulses for 1.8 μs spacing (variable)
 - 6 Neutron flight paths (from ~8 up to 90 m)
- Lujan Center Target 1 moderated source
 - Flux trap design typ. ~100 μ A
 - Cold (LH₂) and water moderators
 - 20 Hz repetition rate, 130 ns pulse (FWHM)

LANSCE neutron energy range covers most applications

WNR 30L flux in 10% neutron energy bins at a flight path of 30 m

The flux is relatively flat in 10% energy bins to the high energy cutoff Flux depends on proton beam parameters, collimation, distance!

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

P-27: Nuclear and Materials Research Facilities • Los Alamos

"Delivering on a robust, sustainable and enduring neutron science program with operational excellence"

Target-4 : High-energy neutrons

- ✤ Nuclear Physics
- Neutron Radiography
- Electronic device irradiation/testing
- ✤ Neutron irradiations

Target 1: Cold-Thermal-1-MeV neutrons

- Neutron Radiography
- ✤ Nuclear science
- ✤ Material science
- Electronic device irradiation/testing

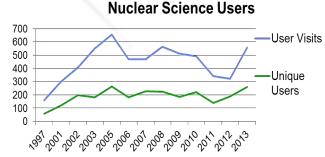
Ida 541 PSR arget 4 larget ER-1 Target 1 **ER-2** Bidg 370 FE HOUSE 3idg 372 Target-2 : Proton beam Proton-induced reactions Material irradiations *** Isotope production testing ** LSDS ** Slide 9

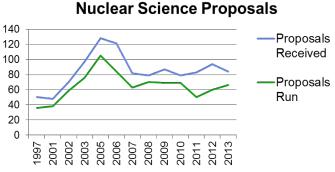
Slide 10

Access – Proposal Submission

- DOE NNSA User Facilities
- Proposals are rated by a program advisory committee for merit
- Open research proposals beam time is free for target 4, under review for Lujan, pRad
- Proprietary proposals "full cost recovery"
- Beam time is awarded based on proposal PAC ratings and facility availability
- Fast access proposals are accepted

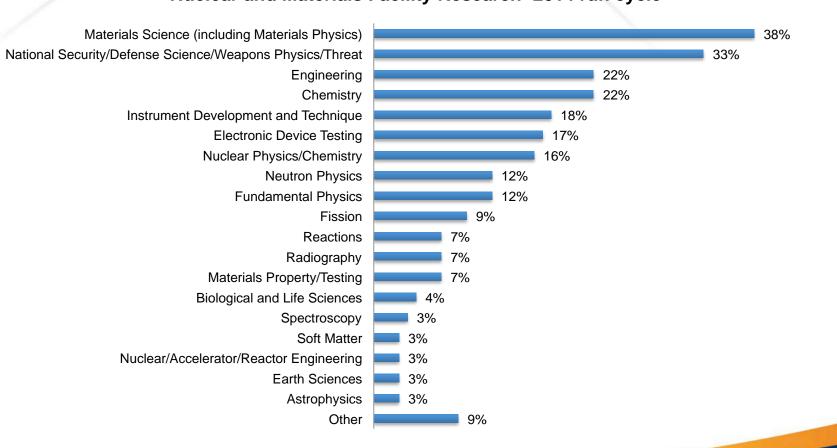
LANSCE has a robust user program


- ~200 nuclear science users per year, ~400 total visits
- Non-U.S. citizen access is routine in most cases


National

Labs

 Users come from universities, industry, & national laboratories


Unique Users 2012

8% Foreign 7% University 24% Industry 33% Voperated by Los Alamos National Security, LLC for the U.S. Department of Energy's NISA

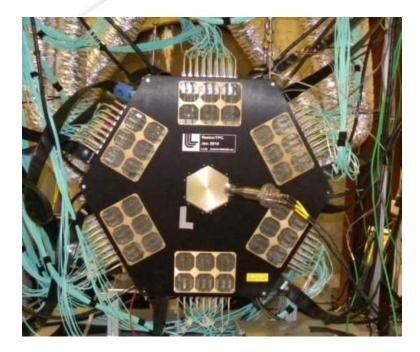
A broad spectrum of research is conducted at LANSCE

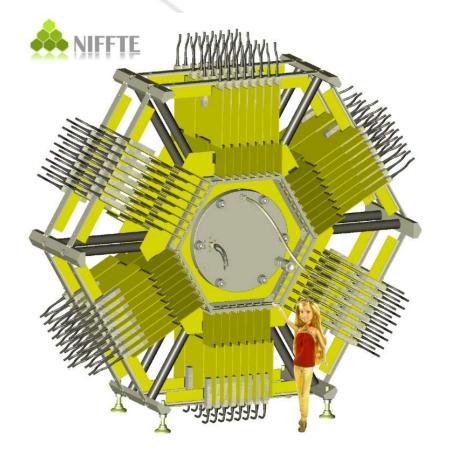
Nuclear and Materials Facility Research- 2014 run cycle

EST.1943

Specialized equipment and detectors Alamo at WNR Targets 4 and 2 (Blue Room)

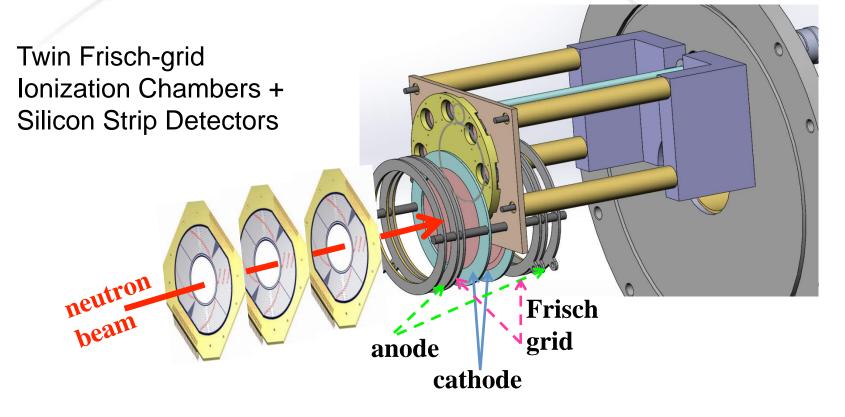
- WNR Facility
 - Chi-Nu arrays of neutron detectors for low and high energy neutrons
 - Time Projection Chamber (TPC) for fission
 - LENZ neutron, charged particle reactions
 - SPIDER fission fragment measurements
 - HPGe detectors reactions and spectroscopy
 - HE Neutron Radiography imaging
 - LSDS (lead slowing-down spectrometer) small cross sections and radioactive samples

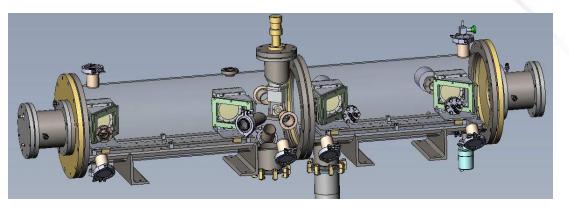

Chi-Nu has two neutron detector arrays for prompt fission neutron spectrum NATIONAL LABORA EST.1943 measurements and more


LLNL fission chamber detector arrays Fission chamber neutron n-beam detectors Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Slide 14

Two LANL neutron

- ⁶Li-glass low-energy neutron detectors
- Liquid scintillator high-energy neutron detectors
- Uses double time-of-flight
 - LANSCE spallation source to fission chamber \rightarrow incident neutron energy
 - Fission chamber to neutron detector \rightarrow fission neutron <u>enerqy</u>


The Time Projection Chamber is measuring Alamos precision fission cross section data



LENZ - low-energy neutron-induced. Los Alamos charged particle reaction setup

SPIDER is designed to measure fission fragment mass and charge with a goal of 1 mass unit resolution

- The 2E-2v method can provide 1 amu resolution for light fragments
 - Demonstrated with Cosi-fan-Tutti at ILL
- SPIDER uses ionization chambers for energy measurement
 - 1% energy resolution for α -particles, 0.5% for fission fragments
 - Thin entrance window (Mylar or SiN)
- Fast, position sensitive TOF detectors
 - Micro-channel plates

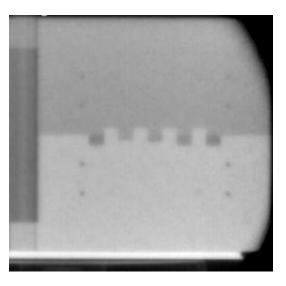

High-energy neutron imaging can bos penetrate very thick dense objects

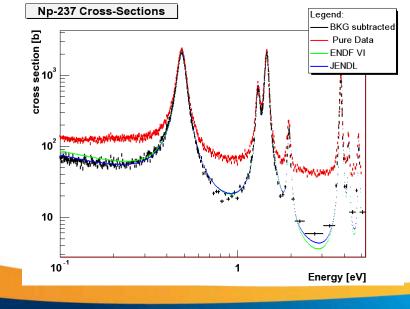
Image Panel, CT stage and uranium plates + test assembly in a WNR highenergy neutron flight path (15R).

n-Radiography Test Assembly from LLNL (above) and radiograph taken with the high energy system (right).

Lujan Center special instruments for nuclear science

- Device for Advanced Neutron Capture Experiments (DANCE) – neutron capture and fission studies
- Neutron radiography MCP energy-resolved neutron imaging and computed tomography
- One "general purpose" flight path (FP-12)
- Plans to expand to other Lujan Center flight paths

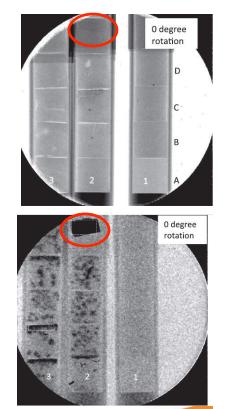
DANCE – for neutron capture and fission measurements (Target 1)

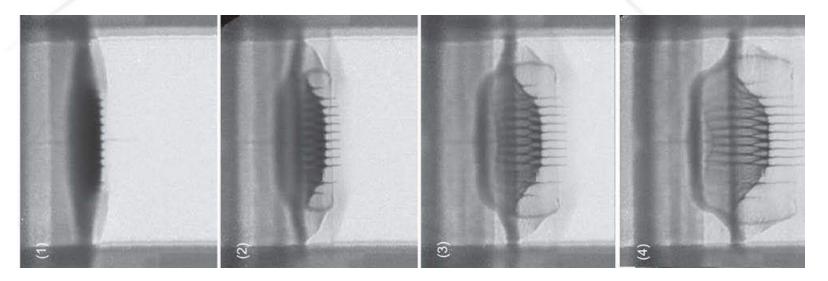


Detector for Advanced Neutron Capture Experiments

- 160 BaF₂ crystals
- 4 different shapes
- 7 cm ⁶LiH ball

•
$$\varepsilon_{\gamma} \approx 90 \%$$


•
$$\varepsilon_{\rm casc} \approx 98 \%$$



Low-energy neutron imaging has a ... variety of applications (Target 1)

- A new capability under development at LANSCE exploits the short (130 ns FWHM) proton beam pulses that produce thermal & epithermal neutrons
- Detector: ¹⁰B-doped Micro Channel Plate
- Resolution: < 100 μm</p>
- Technique uses nuclear resonances that are isotope specific
- Tungsten inclusions in uranium rods have been imaged (at right) using resonance gating

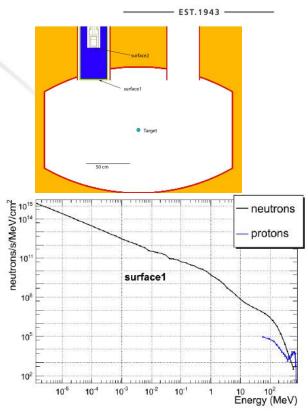
Proton Radiography (pRad) captures Los Alamos fast transient phenomena

Tin target shocked by an explosively driven flyer plate The action takes place over 3 microseconds

Camera shutter speeds of 60 ns

Users include: AWE, CEA, VNIIEF ARL, Harvard, Imperial College, & Technical University of Darmstadt.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA


Proton irradiations are performed in the Blue Room, new facility planned

- Blue Room (Target 2) direct proton beam
 - 800 MeV beam energy, but lower is possible
 - ≤ 80 nA proton beam current = 5x10¹¹ p/s typ.
 - 2.5 cm diameter beam spot, typical
 - Turns off WNR Target-4 flight paths
- Planned facility at LANSCE Area A
 - Can run simultaneously with WNR Target-4
 - Large area, flexible configurations
 - Higher currents than Blue Room allowed

Neutron irradiations are performed Los Alamos at two locations

- Target-4 East Port (at right)
 - Near neutron production target
 - Neutron flux ~3x10¹³ n/cm²/day for 1-100 MeV & 100-800 MeV
- Target-4 FP-60R @ 10 m
 - Peripheral beam in front of collimator
 - 3x10¹¹ n/cm²/day

Energy	Neutrons/cm ² /day		
1eV-1keV	5.9E+13		
1keV-1MeV	1.1E+14		
1MeV-100MeV	2.5E+13		
100-800MeV	2.9E+13		

EST.1943

Summary of user program

Summary of LANSCE User Facility Experimental Stations					
WNR Target 4 Hig	h-Energy Ne	utrons (~100 keV t	o 600 MeV)		
Flight Path or Station	Distance	Flux (typ.) 10% En bin – depends on collimation!	Neutron Shutter	Attributes	
TPC - 4FP90L	7 – 15 m		Fixed circular		
ICE House - 4FP30L	~20 – 30 m	~10 ⁵ n/cm ² s	Fixed circular	"Cosmic-ray flux"	
40 m stn 4FP30L	40 m		Fixed circular	ICE House off	
Chi-Nu - 4FP15L	22 m		Variable rectangle	Low n return pit	
90 m stn - 4FP15L	90 m		Variable rectangle	Chi-Nu off	
4FP15R	13 – 29 m		Variable rectangle		
ICE II - 4FP30R	~14 – 18 m	~2 x 10 ⁵ n/cm ² s	Fixed circular	"Cosmic ray-flux"	
4FP60R	20 m		Fixed circular		
n-irradiation - 4FP60R	~10 m	~ 10 ¹¹ n/ cm ² s	Fixed circular	Simultaneous 4FP60R	
Target 4 East Port	~1 – 2 m	~ 10 ¹³ n/ cm ² s	NA	Simultaneous Target 4	
	•			-	
Luian Center Targ	et 1 Moderat	ted Neutrons (me\	/ to 1 MeV)		
Flight Path or Station	Distance	Flux (typ.) depends on collimations, etc.	Neutron Shutter	Attributes - moderator	
n-imaging – 1FP5	6 – 10 m		Fixed circular	Water	
1FP12	~16 m		Fixed Hg circular	LH ₂ , 2 choppers	
DANCE - 1FP14	20 m		Fixed Hg circular	Water	
Blue Room Targe basement & dom	e	200 – 800 MeV pro			
Use	Max. current	Flux	Beam diameter	Attributes	
Proton irradiations	80 nA	~3x10 ¹³ p/cm ² s	~5 cm	Target 4 off, low n return design	
LSDS	1 μA avg or ~10 ¹³ p/ pulse(PSR)	~1000x target-4 fluxes,	< 1 cm	Target 4 off, linac or proton storage ring (PSR) beam, low n-energy resolution	
Proton Padiogram	hu Area C D				
Proton Radiograp	FOV	Protons/pulse (typ.)	Time Range	Attributes	
p-imaging, fast	~10 cm		ns – μs or longer	Magnetic lenses -I, 3x	

Thank You for Your Attention!

