Nuclear Data Needs for ²³⁸Pu Production Targets in HFIR

M.T. Pigni and I.C. Gauld

Oak Ridge National Laboratory Oak Ridge, TN

Nuclear Data Needs and Capabilities for Applications Lawrence Berkley National Laboratory 27-29 May 2015

ORNL is managed by UT-Battelle for the US Department of Energy

Background

- Historically U.S. used ²³⁸Pu in RTG⁽¹⁾ and RHU⁽²⁾
- U.S. ²³⁸Pu production ended 1988 with the shutdown of SRS⁽³⁾ reactors
- Since 1993, 16.5 kg ²³⁸Pu purchased from Russia (ended 2009)
- Domestic supply necessary (DOE request in 2009)
- DOE goal is to produce 1.5 to 2 kilograms of ²³⁸Pu/year within the DOE complex (at HFIR and ATR) by 2018
 Curiosity's RTG is fueled by 4.8 kg (11 lb)

of 238 Pu dioxide supplied by the U.S. DOE

125 watts of electrical power from about 2,000 watts of thermal power at the start of the mission

²³⁸Pu oxide pellet

Radioisotope within a graphite shell goes into the generator

- (1) Radioisotope Thermoelectric Generators to generate electrical power
- (2) Radioisotope Heater Units to produce heat for electronics and environmental control for deep space missions
- (3) In the late '50s Savannah River Site began generating, collecting ²³⁷Np targets that were then irradiated with neutrons to produce ²³⁸Pu (Fuller et al. WM2013 Conference, Phoenix, Arizona)

²³⁸Pu Production in HFIR

- ²³⁷NpO₂–AI targets irradiated in HFIR reflector VXF locations
- Analyses required for both production (cross section) and safety (fission product)
- Thermal limits^(*) primarily from the fission of ²³⁸Np and ²³⁹Pu isotopes (current target loading is limited to 20% of ²³⁷NpO₂)
- Radiochemical measurements of fission products in irradiated 1cycle targets found large discrepancies between predictions and measurements (> 30%) in fission products suggesting possible overestimate of fission rates
- However, validation of calculated fission rates used in the safety analysis is difficult due to uncertainties in nuclear data

(*) Heat generation also due to gammas from capture, prompt- and delayed-gammas, beta and alpha decay.

Nuclear Data – Fission Product Yields

- Large discrepancies between predicted and measured individual FPs is likely due to poor fission yield data for ²³⁸Np used in calculations
 - ENDF/B-VII.1 does not contain fission product yields for ²³⁸Np thermal fission – only fast fission (not appropriate for thermal VXF sites)
 - Use of ²³⁸Np fast fission yields for targets can result in 10 to 30% errors
 - Yields have very large uncertainties (10-40%) for measured fission products, e.g., ¹³⁷Cs (±30%), ¹⁴⁸Nd (±28%), ¹⁴⁴Ce (±55%)
 - These uncertainties make it very difficult to use individual FP measurements to validate
 ²³⁸Np fission rates

Comparison of ²³⁸Np thermal and fast fission sum yields (data from JEFF 3.1)

Nuclear Data – Thermal Cross Sections

There are also large uncertainties in the cross section data for ²³⁸Pu production from ²³⁸Np (+/-10%)

Data	237 Np		²³⁸ Np		²³⁸ Pu	
Library	(n,f)	(n, y)	(n,f)	(n, γ)	(n,f)	(n, γ)
ENDF/B-VII.1	0.0203±5(%)	175.4±8(%)	2201.6±10(%)	479.5±10(%)	17.7±1.6(%)	412.8±10(%)
ENDF/B-VII.0	0.0203	161.7	2071.0	450.3	17.0	560.9
JEFF-3.0/A	0.0180	181.1	2028.8	203.0	17.2	546.62

- Changes from ENDF/B-VII.0 \rightarrow -VII.1
 - 237Np(n_{th},γ) +8%
 - 238Pu(n_{th},γ) -26%
 - 238Np(n_{th},γ) +6%
- ²³⁸Np(n_{th},f)
 - Spencer et al. (1969) σ = 2070 +/- 30 b
 - Abramovich et al.(1995) σ = 2110 +/- 74 b
 - Danon et al. (1996)
 σ = 2641 +/- 58 b
 - Furutaka et al. (2008) σ = 2201 +/- 34 b
- Better overall agreement between calculated and measured actinides (²³⁸Pu and ²³⁹Pu) observed when using ENDF/B-VII.1 cross sections

Decay data and cumulative FPY

Black dots : ratio of cumulative FPYs obtained by independent FPY and decay data in ENDF/B-VII.1 to cumulative FPYs in ENDF/B-VII.1.

Although deviations are small, ratios should be one!!

In red uncertainties (%) of cumulative yields in ENDF/B-VII.1

Summary

- Improvement of ²³⁸Np nuclear data evaluations (cross sections and fission product yields) are needed for ²³⁸Pu production
- Cross sections and fission product uncertainties and correlations: ²³⁸Np thermal cross section has 10% uncertainty, fission products very high uncertainties
- Fission product yields: large discrepancies (>30%) between predicted and measured
- Develop improved and reliable fission yield models for ²³⁸Np

