

Nuclear Data for Medical Radionuclide Production: Present Status and Future Needs

Syed M. Qaim

Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich, Germany; Abteilung Nuklearchemie, Department für Chemie, Universität zu Köln, Germany

Plenary Lecture given at the Workshop on Nuclear Data Needs and Capabilities for Applications, Berkeley, California, USA, 27 to 29 May 2015

Outline

Introduction

Commonly used radionuclides

- status of nuclear data
- standardisation of production data

Research oriented radionuclides

- non-standard positron emitters
- novel therapeutic radionuclides

Changing trends in production and application

- alternative routes for production of ^{99m}Tc
- new directions in radionuclide applications
- Future data needs
- Summary and conclusions

Nuclear Data Research for Radionuclide Applications

Aim

- Provide database for optimum production and application of radionuclides
 - remove discrepancies in existing data
 - search alternative production routes of established radionuclides
 - develop novel radionuclides

Areas of work

- Experimental measurements
- Nuclear model calculations
- Standardisation and evaluation of data

Considerable effort is invested worldwide in nuclear data research

- Choice of a radionuclide depends on decay data
- **Considerations:** suitability for imaging
 - radiation dose

Demands:

- Diagnosis: minimum dose (γ or β^+ emitters)
- Therapy: suitable localised dose (β^- or α -particle emitters)
- Status of decay data good; occasional discrepancies in
 - weak γ -ray intensities
 - $\beta^{\scriptscriptstyle +}$ emission branching
 - Auger electron spectra

Major references

MRID: Radionuclide Data and Decay Schemes (2007) NNDC: Evaluated Decay Data Files

Nuclear Reaction Data

Aim

Optimisation of production procedure

- maximise product yield
- minimise radioactive impurity level

Types of data

Neutron data for production in a nuclear reactor, e.g.

 (n,γ) , (n,f) and (n,p) reactions

Photonuclear data for production at an accelerator, e.g.

(y,n) and (y,p) reactions

Charged particle data for production at a cyclotron, e.g.

p, d, ³He- and α -particle induced reactions

Radionuclides Commonly used in Nuclear Medicine

Diagnostic Radionuclides

For SPECT

 γ -emitters (100 – 250 keV)

^{99m}Tc, ¹²³I, ²⁰¹TI

(used worldwide)

For PET
 β⁺ emitters
 ¹¹C, ¹³N, ¹⁵O, ¹⁸F,
 ⁶⁸Ge (⁶⁸Ga), ⁸²Sr (⁸²Rb)

(fast developing technology)

Therapeutic Radionuclides (in-vivo)

- β⁻-emitters (³²P, ⁹⁰Y, ¹³¹I, ¹⁵³Sm, ¹⁷⁷Lu)
- α -emitter (²¹¹At)
- Auger electron emitters (¹¹¹In, ¹²⁵I)
- X-ray emitter (¹⁰³Pd)

(increasing significance)

Status of nuclear data is generally good

Standardisation of Production Data

- Neutron data extensively evaluated, mainly for energy research; also useful in reactor production of radionuclides
- Charged particle data evaluation methodology is developing, mainly co-ordinated by IAEA. It involves
 - compilation of data (EXFOR)
 - normalisation of data (decay data, monitor cross section, etc.)
 - nuclear model calculation
 - statistical fitting of data

Role of nuclear model calculations

- Validation of experimental data
- Guidance in rejection of inaccurate data
- Prediction of unknown data

Examples of Evaluated Data

- Neutron data generally well evaluated
- Evaluation of charged particle data partially successful (often based on data fitting procedures)

Evaluated Data for Production of Commonly used Radionuclides

Diagnostic radionuclides

Gul, Hermanne, Mustafa, Nortier, Oblozinsky, Qaim (Chairman), Scholten, Shubin, Takács, Tárkányi, Zhuang, IAEA-TECDOC-1211(2001); pp. 1 - 285

Therapeutic radionuclides

Qaim, Tárkányi, Capote (Editors), IAEA Technical Report Series No.473 (2011); pp. 1 - 358

Evaluation of data for production of emerging radionuclides is continuing

Research Oriented Radionuclides

- Non-standard positron emitters
 - to study slow metabolic processes
 - to quantify targeted therapy
- Novel low-range highly ionising radiation emitters for internal radiotherapy
 - for targeted therapy

Emphasis is on metal radionuclides

Production Routes of ⁶⁴Cu

Nuclear process	Optimum energy range [MeV]	Thick target yield [MBq/µA∙h]
⁶⁴ Ni(p,n) ⁶⁴ Cu ^{a)}	12 → 8	304
⁶⁴ Ni(d,2n) ⁶⁴ Cu ^{a)}	17 → 11	430
⁶⁸ Zn(p,αn) ⁶⁴ Cu ^{a)}	$30 \rightarrow 21$ ^{b)}	116
⁶⁶ Zn(p,2pn) ⁶⁴ Cu ^{a)}	$52 \rightarrow 37$	316
⁶⁴ Zn(d,2p) ⁶⁴ Cu ^{a)}	$20 \rightarrow 10$	27.1
66 Zn(d, $lpha$) 64 Cu $^{a)}$	13 → 5	13.8
^{nat} Zn(d,x) ⁶⁴ Cu	$25 \rightarrow 10^{\text{ c})}$	57.0

a) Using highly enriched target material, low enrichment leads to impurities

- b) Below threshold of ⁶⁷Cu impurity via the ⁶⁸Zn(p,2p)⁶⁷Cu reaction
- c) Below thresholds of ⁶¹Cu and ⁶⁷Cu impurities via the ⁶⁴Zn(d,αn)⁶¹Cu and ⁶⁸Zn(d, 2pn)⁶⁷Cu reaction, respectively

Extensive studies performed at Brussels, Cape Town, Debrecen, Jülich and Segrate

Excitation Function of ⁶⁴Ni(p,n)⁶⁴Cu Reaction

 $E_p: 12 \rightarrow 8 \text{ MeV}$

Yield: 304 MBq/µAh

Formation of Isomeric States

- Occasionally unavoidable isomeric impurity
- Level depends mainly on type of reaction

Example : ⁹⁴Mo(p,n)^{94m,g}Tc

Qaim, NMB 27, 323 (2000).

^{94g}Tc impurity in ^{94m}Tc

⁹⁴ Mo(p,n)		6%
⁹³ Nb(³ He,2n)	-	25%
⁹² Mo(α,pn)		30%

Extensive investigations mandatory

For theoretical discussion, cf. Strohmaier et al., Phys. Rev. C 56, 2654 (1997).

Novel Positron Emitters for Medical Applications Produced via Low Energy Reactions (E ≤ 20 MeV)

Qaim, RCA 99, 611 (2011)

Nuclide	Major production route	Energy range [MeV]	Application
⁵⁵ Co (17.6 h)	⁵⁸ Ni(p,α) ⁵⁴ Fe(d,n)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Tumour imaging; neuronal Ca marker
⁶⁴ Cu (12.7 h)	⁶⁴ Ni(p,n)	$14 \rightarrow 9$	Radioimmunotherapy
⁶⁶ Ga (9.4 h)	⁶⁶ Zn(p,n)	13 → 8	Quantification of SPECT
⁷² As (26.0 h)	^{nat} Ge(p,xn)	18 → 8	Tumour localisation; immuno-PET
⁷⁶ Br (16.0 h)	⁷⁶ Se(p,n)	15 → 8	Radioimmunotherapy
^{82m} Rb (6.2 h)	⁸² Kr(p,n)	$14 \rightarrow 10$	Cardiology
⁸⁶ Y (14.7 h)	⁸⁶ Sr(p,n)	$14 \rightarrow 10$	Therapy planning
⁸⁹ Zr (78.4 h)	⁸⁹ Y(p,n)	14 → 10	Immuno-PET
^{94m} Tc (52 min)	⁹⁴ Mo(p,n)	13 → 8	Quantification of SPECT
¹²⁰ I (1.3 h)	¹²⁰ Te(p,n)	13.5 ightarrow 12	lodopharmaceuticals
¹²⁴ I (4.2 d)	¹²⁴ Te(p,n)	12 → 8	Tumour targeting; dosimetry

Some cross section data are discrepant; further work is essential.

Non-standard Positron Emitters

 Intermediate energy reactions give higher yields but lower radionuclidic purity; yet they are used for production of some positron emitters.

Novel Therapeutic Radionuclides

⁶⁷Cu (T_{1/2} = 2.6 d; E_{β}- = 577 keV)

¹⁸⁶**Re** (T_{1/2} = 3.7 d; E_{β}- = 1070 keV)

²²⁵Ac ($T_{\frac{1}{2}}$ = 10.0 d; E_{α} = 5830 keV)

¹³¹**Cs** ($T_{\frac{1}{2}}$ = 9.7 d; X-rays)

^{117m}Sn ($T_{\frac{1}{2}}$ = 13.6 d; Conversion electrons)

^{193m}**Pt** ($T_{\frac{1}{2}}$ = 4.3 d; Auger electrons)

Production of Copper-67

Routes: ⁷⁰Zn(p,α); ⁶⁸Zn(p,2p); ⁶⁸Zn(γ,p); ⁶⁷Zn(n,p)

⁶⁸Zn(γ,p)⁶⁷Cu

Yield: 1 MBq/(g•kW•h) for Zn target Starovoitova et al., ARI **85**, 39 (2014).

⁶⁷Zn(n,p)⁶⁷Cu

Yield: 4.4 MBq/(g•h for 10¹⁴ n cm⁻² s⁻¹) for Zn target Uddin et al., RCA **102**, 473 (2014).

Reaction 68 Zn(p,2p) 67 Cu at $E_p = 80 \rightarrow 30$ MeV most promising; but strong disturbance from 68 Zn(p,2n) 67 Ga reaction; good chemical separation mandatory

Production of Actinium-225

All methods of ²²⁵Ac production need further development

Alternative Routes for Production of Tc-99m ($T_{\frac{1}{2}}$ = 6.1 h)

Due to ageing reactors, production via ²³⁵U(n,f)-route is in jeopardy. Alternative suggested routes include:

^{nat} U(γ,f) ⁹⁹ Mo	(σ = 160 mb at 15 MeV)	Detailed data needed	For reviews. cf.	
²³² Th(p,f) ⁹⁹ Mo	(σ = 34 mb at 22 MeV)	Detailed data needed	Ruth,	
¹⁰⁰ Mo(γ,n) ⁹⁹ Mo	(σ = 150 mb at 14 MeV)	Detailed data needed	Nature 457 , 536 (2009);	
¹⁰⁰ Mo(n,2n) ⁹⁹ Mo	(σ = 1500 mb at 14 MeV)	More data needed	Van der Marck et al. Eur. J. Nucl. Med. Mol. Imaging 37 , 1817 (2010);	
¹⁰⁰ Mo(p,pn) ⁹⁹ Mo	(σ = 150 mb at 40 MeV)	Evaluated data available	Qaim,	
¹⁰⁰ Mo(p,2n) ^{99m} Tc	(σ = 284 mb at 17 MeV)	Evaluated data available	(2014).	

^{nat}U(n,f)⁹⁹Mo process with **spallation neutrons** appears interesting, but cross section is unknown.

Presently the most promising route is the ¹⁰⁰Mo(p,2n)^{99m}Tc reaction; other processes need further investigation.

Long-lived Impurities in Cyclotron Production of ^{99m}Tc

¹⁰⁰Mo(p,2n)^{99g}Tc ($T_{\frac{1}{2}} = 2.1 \times 10^5 \text{ a}$); ¹⁰⁰Mo(p,3n)⁹⁸Tc ($T_{\frac{1}{2}} = 4.2 \times 10^6 \text{ a}$)

Experimental values via mass-spectrometric measurement of ^{99g}Tc reported; theoretical predictions done.

New Directions in Radionuclide Applications

Quantification of SPECT agents

(combination of PET/SPECT) ^{94m}Tc/^{99m}Tc, ¹²⁰I/¹²³I, etc.

Multimode imaging

(combination of PET/CT and PET/MRI) Positron emitters needed: ⁵²Mn, ⁵²Fe, ⁵⁷Ni, ⁶⁴Cu, etc.

Theragnostic pairs

(combination of PET/Therapy) ⁴⁴Sc/⁴⁷Sc, ⁶⁴Cu/⁶⁷Cu, ⁸⁶Y/⁹⁰Y, ¹²⁴I/¹³¹I, etc.

Radioactive nanoparticles

Better delivery of radionuclide to tumour?

Continuous nuclear data research is mandatory

Future Data Needs

Considerations

Demands on quality of radionuclides (yield, radionuclidic and chemical purity, specific activity)

- Changing trends in medical applications (multimode imaging, theragnostic approach, targeted therapy, radioactive nanoparticles)
- Developments in accelerator technology

cf. Report: IAEA-INDC(NDS)-0596 (2011), describes some data needs

Nuclear data research to concentrate on

- Charged particle induced reactions
- High energy photon induced reactions
- Fast neutron induced reactions

Charged Particle Reaction Data

Low-energy region (E < 30 MeV)

Non-standard β^+ emitters

- Evaluate existing data
- Validate evaluated data through integral yield measurements
- Strengthen database via measurements and calculations.

Examples :

⁴⁵Sc(p,n)⁴⁵Ti; ⁵²Cr(p,n)⁵²Mn; ⁵⁴Fe(d,n)⁵⁵Co; ⁶⁷Zn(p, α)⁶⁴Cu; ⁷²Ge(p,n)⁷²As; ⁷⁴Se(d,n)⁷⁵Br; ⁸⁶Sr(p,n)⁸⁶Y; ¹²⁰Te(p,n)¹²⁰I, and many other potentially useful reactions.

Accompanying impurities must be determined. Use of highly enriched targets is strongly recommended.

β⁺ emission intensities in decay of ⁶⁶Ga, ⁸⁶Y, ¹²⁰I, etc. need to be accurately determined.

Charged Particle Reaction Data

Intermediate-energy region (30 – 100 MeV and beyond)

Non-standard β^+ *emitters*

Strengthen database. *Examples:*

⁵⁵Mn(p,4n)⁵²Fe; ⁵⁹Co(p,3n)⁵⁷Ni; ⁶⁸Zn(p, α n)⁶⁴Cu; ⁷⁵As(p,3n)⁷³Se; ⁸⁵Rb(p,3n)⁸³Sr; ⁸⁸Sr(p,3n)⁸⁶Y; ¹²⁵Te(p,2n)¹²⁴Te, and many other potentially useful reactions.

SPECT radionuclides and generator parents

Strengthen database. Examples:

- (a) ${}^{124}Xe(p,pn){}^{123}Xe \rightarrow {}^{123}I; {}^{124}Xe(p,2p){}^{123}I$
- (b) (p,x) reactions on ⁹⁴⁻⁹⁸Mo to determine possible impurities in cyclotron produced ^{99m}Tc
 SPECT
- (c) ${}^{45}Sc(p,2n){}^{44}Ti; {}^{69}Ga(p,2n){}^{68}Ge; {}^{75}As(p,4n){}^{72}Se; {}^{nat}Br(p,x){}^{72}Se; {}^{nat}Rb(p,xn){}^{82}Sr$ (Parents of β^+ emitters)

SPECT

Charged Particle Reaction Data

Intermediate-energy region (cont'd)

Therapeutic nuclides

Strengthen database. Examples:

⁶⁸Zn(p,2p)⁶⁷Cu; ⁷⁰Zn(p,α)⁶⁷Cu; ¹⁰⁷Ag(p,αn)¹⁰³Pd; ²³²Th(p,x)²²⁵Ac;
 ¹⁸¹Ta(p,spall)¹⁴⁹Tb, ¹⁵²Tb, ¹⁵⁵Tb (1.4 GeV irradiation and ISOLDE/CERN)
 Investigation of impurities absolutely necessary

Deuteron-induced reactions possibly more useful for production of ¹⁰³Pd and ¹⁸⁶Re. More data are needed.

Alpha-particle induced reactions very useful for production of high-spin isomers, e.g.

¹¹⁶Cd(α ,3n)^{117m}Sn; ¹⁹²Os(α ,3n)^{193m}Pt, etc. More data are needed.

Some work possible also with ⁷Li and heavier ions

Intermediate-energy multi-particle accelerators have great potential for medical radionuclide production.

Considerable progress in technology for photon production
 Types of nuclear reactions (v, p), (v, 2p), (v, f), etc.

(γ,n), (γ,p), (γ,2n), (γ,f), etc.

Available database is weak cf. Report IAEA-TECDOC-1178 (2000)

Data needs. Examples:

 68 Zn(γ,p) 67 Cu; 100 Mo(γ,n) 99 Mo; 104 Pd(γ,n) 103 Pd; 124 Xe(γ,n) 123 Xe; 232 Th(γ,f) 99 Mo; 238 U(γ,f) 99 Mo, and several other reactions

Targetry is simple, but yield is rather low.

Extensive efforts needed to improve database; www.but limited application to medical radionuclide production.

Fast Neutron Induced Reactions

- Fission neutrons extensively used for medical radionuclide production.
 Special data needs will always arise.
- d/Be beak-up and spallation neutrons could be advantageously used for radionuclide production, especially for neutron threshold reactions cf. Spahn et al., RCA 92, 183 (2004); Al-Abyad et al., ARI 64, 717 (2006)

Examples: β⁻ emitters

³²S(n,p)³²P; ⁴⁷Ti(n,p)⁴⁷Ca, ⁶⁴Zn(n,p)⁶⁴Cu; ⁶⁷Zn(n,p)⁶⁷Cu; ⁸⁹Y(n,p)⁸⁹Sr; ¹⁰⁵Pd(n,p)¹⁰⁵Rh; ¹⁴⁹Sm(n,p)¹⁴⁹Pm, ¹⁵³Eu(n,p)¹⁵³Sm, ¹⁵⁹Tb(n,p)¹⁵⁹Gd; ¹⁶¹Dy(n,p)¹⁶¹Tb; ¹⁶⁶Er(n,p)¹⁶⁶Ho; ¹⁶⁹Tm(n,p)¹⁶⁹Er; ¹⁷⁵Lu(n,p)¹⁷⁵Yb; ¹⁷⁷Hf(n,p)¹⁷⁷Lu, and several other reactions

- Some α-emitting radionuclides, such as ²²⁵Ac, ²²³Ra, ²²⁷Th, etc. can also be produced using spallation neutrons
- Spallation neutrons could be used to induce fission of ²³²Th or ²³⁸U to produce ⁹⁹Mo (avoid criticality problem)

Fast neutron spectral sources need to be developed for medical radionuclide production; data needs are extensive.

ÜLICH

Summary and Conclusions

- Radionuclide production technology is rapidly progressing.
- Accurate knowledge of nuclear data is absolutely necessary for production and application of radionuclides in medicine.
- Nuclear data needs are more stringent in accelerator production of radionuclides than in reactor production.
- Constant nuclear data research is necessary to meet changing trends in medical applications.
- Future needs of production data will be related to extensive use of intermediate-energy charged particle accelerators, some selective use of high-intensity photon generators, and enhancing use of spallation neutron sources.

