Challenges and Successes in Application of the Evaluated Nuclear Data for the Missouri University

Research Reactor Core Irradiation Simulations

N.J. Peters University of Missouri Research Reactor Facility 1513 Research Park Drive, Columbia, Missouri 65211 – U.S.A

http://www.murr.missouri.edu

University of Missouri Research Reactor

A 10 MW reactor that operates 24 hours a day, seven days a week, 52 weeks a year

165 full time-time employees

In 2014 produced **36 different isotopes** with 1175 shipments to 7 different countries

Each and every week MURR supplies the active ingredients for FDA approved **Quadramet[®]** and **TheraSpheres[®]**

MURR Isotope Production Activities

Ř

(Industrial and Research) Isotopes Produced in 2014			
Au-198	Ir-192*	Sb-122	
Au-199	Kr-79	Sb-124	
Ba-131	Mo-99	Sc-46	
Ca-45	Na-24	Se-75	
Cd-115	P-32	Sm-153*	
Ce-141	P-33	Sn-117m	
Co-60	Pd-109	Sr-89	
Cr-51	Po-210	W-181	
Cu-64	Rb-86	Y-90	
Fe-59	Re-186	Yb-169	
Lu-177*	Ru-103	Zn-65	
Hg-203	S-35	Zr-95	

MURR Isotope Production Research Activities

- Carrier free lanthanides
 - Indirect production (Lu-177, Pm-149, Ho-166)
 - DOE Advanced Nuclear Medicine Initiative
 - Electromagnetic isotope separation (Sm-153)
 - DOE SBIR
- Mo-99
 - n, gamma production for novel generator technologies
 - Industry partnership with Northstar
 - fission production with uranium recycle
 - Industry partnership with Northwest Medical Isotopes
- Rh-105
 - Carrier free from uranium fission using selective gas extraction
 - Subcontract with General Atomics/DOE Isotope Program
- Re-186
 - Accelerator production and separations for high specific activity
 - DOE Isotope Program
- As-72, As-77, Cu-67
 - Production of high specific activity with target recycle
 - DOE Isotope Program

MURR Isotope Production Research Activities

- Po-210
 - Production and incorporation into nuclear batteries
 - Private Industry
- Pm-147, Gd-148
 - Collection of long-lived isotopes from primary cooling loop at FRIB
 - DOE Isotope Program
- Os-191
 - Production and incorporation into device
 - Industry partnership with CheckCap

Near Term DOE Isotope Program Supported Research Priorities

- Radioactive Isotope Separation (Sm-153 and Sn-117m)
- Production of High Specific Activity As-72, As-77 and Cu-67 for Research and Clinical Applications: Effective design and recycling of targets and radioisotope separation
- Accelerator Production and Separations for High Specific Activity Re-186
- Development of Separation Chemistry for Collection of Long-Lived Radioisotopes (Pm-147 and Gd-148) from the Primary Cooling Loop at FRIB

University of Missouri Research Reactor

University of Missouri Research Reactor: A US High-Performance Research Reactor

Facility	Power	Facility	Power
Advanced Test Reactor, INL	250 MW	University of Wisconsin	1 MW
High Flux Isotope Reactor, ORNL	85 MW	Washington State University	1 MW
Neutron Beam Split-Core Reactor, NIST	20 MW	Ohio State University	500 kW
University of Missouri, Columbia (MURR [®])	10 MW*	Kansas State University	250 kW
Massachusetts Institute of Technology	6 MW	Reed College	250 kW
University of California-Davis	2 MW	University of California-Irvine	250 kW
Rhode Island Nuclear Science Center	2 MW	University of Maryland	250 kW
Oregon State University	1 MW	University of Missouri, Rolla	200 kW
University of Texas, Austin	1 MW	University of Arizona	100 kW
North Carolina State University	1 MW	University of Florida	100 kW
Pennsylvania State University	1 MW	University of Utah	100 kW
Texas A&M University	1 MW	Purdue University	1 kW
University of Massachusetts-Lowell	1 MW	Idaho State University	5 W
		University Of New Mexico	5 W

Rensselaer Polytechnic Institute

1 W

University of Missouri Research Reactor : Basic Reactor Parameters

The MURR[®] is a pressurized, heterogeneous reflected, open pool-type, which is light-water moderated and cooled

- Maximum power 10 MW_{th}
- Peak flux in center test hole 6.0E14 n/cm²-s*
- Core 8 HEU fuel assemblies
- Excess reactivity control blades 5 total: 4 BORAL[®] shim-safety, 1 SS regulating
- Reflectors **beryllium and graphite**
- Forced primary coolant flow rate 3,750 gpm (237 lps)
- Forced pool coolant flow rate **1,200 gpm (76 lps)**
- Primary coolant temps 120 °F (49 °C) inlet, 136 °F (58 °C) outlet
- Primary coolant system pressure **85 psia (586 kPa)**
- Pool coolant temps 100 °F (38 °C) inlet, 106 °F (41 °C) outlet
- Beamports three 4-inch (10 cm), three 6-inch (15 cm)

University of Missouri Research Reactor: Core Models and Simulations

- Use of state-of-the-art code systems and nuclear data libraries to develop high-confidence MURR core models and simulations
 - Key quantities to be predicted: neutron and gamma fluxes distributions
- Benchmarked MURR models and simulations are used for:
 - Predicting accurate reactor-core physics parameters for routine reactor operations (e.g, critical rod positions, excess core reactivity and worth's of samples and experiments etc.)
 - Nuclear data handling: NJOY
 - Irradiation transport and nuclear inventories: (MCNP, ORIGEN, MONTEBURNS)
 - Isotopes production (activity and heat generation predictions)
 - Nuclear data handling: NJOY
 - Irradiation transport and nuclear inventories: (MCNP/MCNPX, ORIGEN, MONTEBURNS)
 - HEU to LEU fuel conversion feasibility studies for the DoE's Material Management and Minimization Reactor Conversion Program
 - Nuclear data handling: WIMS-ANL, NJOY
 - Irradiation transport and nuclear inventories: (MCNP/MCNPX, Diff-3D, ORIGEN, REBUS, MONTEBURNS)

University of Missouri Research Reactor Computational Methodology

Benchmarking Measurements in ROW2

Activation experiments:

- **Targets made from dilute** single-elements standards to benchmark reaction rates
- **Targets made from NIST** SRM to predict concentration

Sample prep:

- Gravimetric
- **Dry matter corrections** (were done where necessary).

Irradiations:

- Sequentially; on the same day over 3 weeks
- times range from 1 min 1 hour in ROW2
- decay times vary from 2 min - 1 week.

Counting:

- Standard gamma ray spectroscopy (HPGe)
- Westphal and Live time correction used
- Counting times vary so that the uncertainty on the counts ~1%.

 $Rate = \overline{\sigma_c \phi} = \frac{R_c}{I \varepsilon n_t SDC} (C_{BR}) \begin{bmatrix} n_c - \text{measured count rate (cps)} I - \text{gamma intensity} \\ \varepsilon - \text{detector efficiency } n_t - \text{number of targets nuclides} \\ C_{BR} - \text{correction for branching decay} \end{bmatrix}$ S, D and C – corrections for Saturation, Decay and Counting, respectively.

×

Benchmarking MURR Core ROW2 Flux Spectrum Using Intrinsic Reaction Rates

$$Rate = \int_{E1}^{E2} \sigma_{capture}(E)\phi(E) \, dE = \overline{\sigma_c \, \varphi}$$

Relative Deviation of Calculated Reaction Rates from the Measured Values For Single Element Standards

- Publication : <u>N.J. Peters</u>, J.D. Brockman, J.D. Robertson, "Using Monte Carlo Transport to accurately predict isotope production and activation analysis rates at the University of Missouri research reactor" J. Radioanal. N. Chem. 282: 255-259 (2009)
- MCNP predicted reaction rates used in new methodology in INAA, publication: <u>N.J. Peters</u>, J.D. Brockman, J.D. Robertson, "A new approach to single-comparator instrumental neutron activation analysis" J. Radioanal. N. Chem. 291(2): 467-472 (2011)

In-114(n, Y)In-114m Excitation Function: Accuracy and Consistency

http://www.nndc.bnl.gov/exfor/endf00.jsp ftp://ftp.nrg.eu/pub/www/talys/tendl2014/neutron_html/neutron.html

Br-79(n, Υ)Br-80 Excitation Function: Data Sets Accuracy and Consistency

Is the excitation function Br-79(n, Y)Br-80 incorrect?

http://www.nndc.bnl.gov/exfor/endf00.jsp

Predicting Activity Production of Highly Absorbing Material: Enriched Ir-191 Targets

MCNP5 Iridium Flux trap Model

192Ft	193Pt	194Pt
STABLE	50 Y	STABLE
0.782%	8: 100.00%	32.86%
1911r STABLE 37.3%	192Ir 73.829 D β-: 95.24% ε: 4.76%	1931r STABLE 62.795

- Irradiation simulation: MURR MCNP5 KCODE model linked to ORIGEN2.2 isotope generation/depletion method - MONTEBURNS
- Continuous energy data libraries: Ir-191 and Ir-192

Ir-191(n, Υ)Ir-192 Excitation Function: Data Sets Accuracy and Consistency

Cross Section

Ir-192(n, Υ)Ir-193 Excitation Function: Data Sets Accuracy and Consistency

Cross Section

Ir-192 Activity Prediction using MCNP–ORIGEN (MONTEBURNS) Simulations

- 7-week irradiation of 0.569 grams of enriched Ir-191 in the MURR core flux trap configuration
- Ir-192 activity prediction: simulated using the ENDF /BVII.0 and ROSFOND data set for Ir-191 and Ir-192, respectively

	Totral Ir sample Mass	¹⁹² Ir EOI Activity	
	grams	Ci	
Measured	0.5690	531.06	
MONTEBURNS	0.56897	519.00	
% Devation	-0.01%	-2.27%	

Modeling Activity Production Suppression due to Neighboring Strongly Absorbing Material

MCNP5 Lutetium/Iridium Flux trap Configuration

¥

- MONTEBURNS predicted Lu-177 activity suppression due to neighboring enriched Ir-191 targets
- Necessary cross-section data libraries for accurate prediction : Lu-176 and Lu-177

http://www.nndc.bnl.gov/nudat2/

3 Lu-176(n, Y)Lu-177 Excitation Function: Data Sets Accuracy and Consistency

J Lu-177(n, Υ)Lu-178 Excitation Function: Data Sets Accuracy and Consistency

Predicted Vs. Measured EOI Activities for Lu-177 and Ir-192 for Irradiation Period 5/31/2010 -7/19/2010

Irradiation Simulations for Studying Radionuclide Contamination in Products

MCNP5 Samarium Flux trap Configuration

 Prediction of Eu-154/155 contamination in product Sm-153 as product to contaminant activity ratio

 Necessary cross-section data libraries for accurate prediction : Sm-152, Sm-153, Eu-154 and Eu-155

Sm-152(n, Υ)Sm-153 Excitation Function: Data Set Accuracy and Consistency

Sm-153(n, Υ)Sm-154 Excitation Function: Data Set Accuracy and Consistency

Eu-154(n, Υ)Eu-155 Excitation Function: Data Set Accuracy and Consistency

Predicted Vs. Measured EOI Activities for Sm-153 and Eu-154

Mass of one	e Sm2O3 sample	0.0414 g	Irradtion Time: 15	L.49 hours
Measured	EOI Activity for x 2	sample	EOI Date: 10/22/20	07
Sm-153 =	351 Ci	Eu-154 =	0.004525 Ci	
MONTEBURNS EOI Activity for x 2 sample				
Sm-153 =	352 Ci	Eu-154 =	0.00544 Ci	
Irr Time	MB Activity Ci/g	MB Activity Ci/g	MB Activity Ci/g	MB Activity Patio

Irr. Time	MB Activity Ci/g	MB Activity Ci/g	MB Activity Ci/g	MB Activity Ratio
Days	Sm-153	Eu-154	Eu-155	A _{RN}
6.31	4.25E+03	6.57E-02	9.59E-03	5.65E+04
Irr. Time	Measured Ci/g	Measured Ci/g	Measured Ci/g	Measured Actvity
Days	Sm-153	Eu-154	Eu-155	Ratio A _{RN}
6.31	4.24E+03	5.46E-02	N/A	7.76E+04

Predicting the Energy Deposition from Radiative Capture: Consistency and Accuracy

- The spatial distribution of the energy deposited by gammas produced from radiative capture should be properly predicted for:
 - target heat generation during irradiation for isotope production
 - determining the effective energy release from new reactor fuel e.g., U-10Mo monolithic LEU fuel for RERTR conversion)
- MCNP uses the Energy-balance methodology to predict spatial energy deposition distributions
- The accuracy of Energy-balance methodology is limited by the integrity of the nuclear data set

- What is the Energy-balance Method?
 - Energy conservation given as:

$$H(E)_{n} = E - \sum_{i} p_{i}(E) [E_{i,out}(E) - Q_{i} + E_{i,y}(E)]$$

- Here, E =is the incident energy
 - p(E) = probability of reaction i at energy E
 - $E_{iout}(E)$ = average exiting particle energy for reaction i at neutron energy E
 - $E_{i_{\rm Y}}(E)$ = average exiting gamma energy for reaction i at neutron energy E
 - $Q_i = Q$ -value of reaction i
 - The energy release of a reaction (H_i) is shown to depend on its excitation function (σ(E))

NJOY Energy Balance Checks for the ENDF/BVII.1

Major problems in the accuracy of the energy-balance method predictions are associated with gamma production data.

- Known issues:
 - For small systems (relative to the mean free path of gammas), and where there are no gamma production data, the heating can be largely over predicted
 - Excessively large gamma production can under predict heating
- <u>New issue:</u>
 - Accuracy of heating depends on neutron spectrum energy cut-off

ENDF Data consistency checked using NJOY (for Lu-176 and Mo-95 neutron capture)

R.E. Macfarlane, https://t2.lanl.gov/nis/data/endf/ebalVII.1/summary.html

Effects of the Neutron Spectrum Energy Cut-off on Capture Heating

<u>N. J. Peters</u>, J.C. McKibben, K. Kutikkad, W.H. Miller, "**Refining the Accuracy of Predicting Physics Parameters at Research Reactors due to the Limitations in Energy Balance Method using MCNP and the ENDF Evaluations**", Nuclear Science and Engineering, **171(3)**: 210-219 (2012)

Practical Importance of Proper Gamma Production for Radiative Capture

- Heating limits for isotope production irradiations at MURR
 - Predicting the heating from capture gammas for a number of targets

Gamma production is lacking for many target nuclides:

ENDF/BVII.1 NJOY Energy-balance checks

Te*(n, γ) no gamma production (production of I-131) Ru*(n, γ) no gamma production Rh-103(n, γ) no gamma production Eu-154(n, γ) no gamma production Eu-155(n, γ) no gamma production Ce-141(n, γ) no gamma production Ce-140(n, γ) no gamma production Sn*(n, γ) no gamma production

- MURR fuel conversion feasibility
 - Predicting the recoverable capture energy for the proposed U10Mo LEU matrix

Extremely thin plates and lacking capture gamma production data for Mo and U

Plates Model

Conclusion

- Where do we go from here?
 - Continual improvement of data sets
- How do we prioritize the requests for improved nuclear data sets?
 - Base on the need for isotope production
 - Medical and industrial (production and capture heat deposition applications)
 - Analytical techniques involving activation

 INAA
 - The need for data on long-lived and 'important' shortlived nuclides