Capabilities at the National Superconducting Cyclotron Laboratory

Sean Liddick NDNCA workshop, May 26-29, 2015

National Science Foundation Michigan State University

NSCL and FRIB Laboratory

- NSCL is funded by the U.S. National Science Foundation to operate a flagship user facility for rare isotope research and education in nuclear science, nuclear astrophysics, accelerator physics, and societal applications
- FRIB will be a national user facility for the U.S. Department of Energy Office of Science when FRIB becomes operational, NSCL will transition into FRIB

National Science Foundation Michigan State University

>500 employees, incl. 40 faculty, ~70 graduate and ~100 undergraduate students

Research Focus

How does subatomic matter organize itself and what phenomena emerge?

- -At and Beyond the Nucleon Driplines
- -Shell evolution, Level Schemes & Collectivity
- -Nuclear Wave Functions through Direct Reactions
- -Reaction Dynamics & Nuclear Equation of State

How did visible matter come into being and how does it evolve?

- -Origin of the Elements
- -Novae, Supernovae, X-ray bursts
- -Neutron Stars and Nuclear Equation of State

Are the fundamental interactions that are basic to the structure of matter fully understood?

- -CVC Hypothesis, Search for New Interactions & Couplings, EDM
- -Mass Measurements, IMME
- -Precise Measurements of Nuclear Radii & Moments

How can the knowledge and technological progress provided by nuclear physics best be used to benefit society?

- -Materials under extreme conditions
- -Detectors and Data for National Security
- -Isotope harvesting

Accelerator Physics

- Accelerator Physics and Projects
- Superconducting RF

Fragmentation

- Primary Beams include various isotopes of O, Ne, Mg, Ar, Ca, Ni, Ge, Se, Kr, Zr, Sn, Xe, Pb, Bi, U
- Primary beam energies vary between 45 MeV/nucleon (²³⁸U) to 170 MeV/nucleon (²⁰Ne, ²⁴Mg)
- Intensities ranges between 0.1 pnA (²³⁸U) to 175 pnA (¹⁶O).
- <u>http://www.nscl.msu.edu/users/beams.html</u>
- Production target is typically Be.

Isolating a Specific Fragmentation Product

National Science Foundation Michigan State University

In-flight Separation Offers a Wide Variety of Rare Isotopes

- At the CCF more than 1000 RIBs have been produced and more than 870 RIBs have been used in experiments.
- LISE for beam rate predictions.

Fast, Stopped, And Reaccelerated Beams of Rare Isotopes

National Science Foundation Michigan State University

Beamtime Allocation through PAC

- Spokesperson (or designated back-up) is official point of contact
 - Certifies that all collaborators agreed to be part of proposal team
 - Responsible for experiment and dissemination of information to collaboration
- All proposals are confidential until approved
- Each proposal is screened by NSCL staff for technical and safety issues
 - Comments are communicated to spokesperson for optional response
 - Comments and response are forwarded to reviewers
- Each submitted proposal is assigned a principal and back-up reviewer
 - Spokesperson and reviewers are encouraged to talk to clarify questions that may arise prior to (or during) PAC meeting
 - No oral presentations
- Director normally accepts PAC recommendation and transmits written PAC statement with note of concurrence to spokesperson
 - PAC approval is valid for 2 (+1) years

Facility for Rare Isotope Beams, FRIB

National Science Foundation Michigan State University

FRIB now

FRIB construction site on 27 May, 2015 - web camera at www.frib.msu.edu

National Science Foundation Michigan State University

Two Examples of NSCL capabilities

- Beta-decay:
 - Measure half-lives, delayed neutron branching ratios, low-energy excited states.
 - Possible extensions to masses and average electron energies.

S NSCL

National Science Foundation Michigan State University

- Neutron capture:
 - Infer neutron capture rates of short-lived isotopes from beta decay
 - Use total absorption spectroscopy to measure gamma-ray cascades.

Beta-Decay Spectroscopy

- Half-life
 - Measure arrival time and position of ions correlate to subsequent beta decay.
- Beta-delay neutron branching ratios
 - Measure delayed neutrons in coincidence with beta-decay electron.
 - Ion-by-ion counting of total number of parent nuclei.
- Unique decay modes
 - Electron conversion of isomeric states

National Science Foundation Michigan State University

S.N. Liddick NDNCA May - 2015

S. Suchyta et al., PRC, 89, 021301(R) (2014)

TAGS: ⁷⁶Ga

(n,γ)

(β**)**

⁷⁶Ga

⁷⁵Ge⁻

- Applied technique to beta decay of ⁷⁶Ga.
- Infer neutron capture cross section of ⁷⁵Ge.
 - Determine level densities and gamma-ray strength functions

⁷⁵Ge(n,γ)

• Infer neutron capture cross section of ⁷⁵Ge.

National Science Foundation Michigan State University

Astrophysics: r-process

National Science Foundation Michigan State University

S.N. Liddick NDNCA May - 2015

R. Surman et al., AIP Advances, 4, 041008 (2014)

Conclusions

- Broad science program at NSCL
 - Physics of atomic nuclei
 - Nuclear astrophysics
 - Fundamental symmetries
 - Applications
- Wide range of experiment equipment to carry out science program.
- Unique combination of a large range of isotopes available over fast, thermal, and reaccelerated energies coupled with state-of-art equipment.
- Two examples demonstrating capabilities for decay spectroscopy.
 - Half-lives, delayed neutron-branching ratios, electron conversion, neutron capture

