Nuclear Data Needs and Capabilities for Applications (NDNCA)

Triangle Universities Nuclear Laboratory Facilities Review

Werner Tornow Duke University & TUNL

TUNL: Accelerator Facilities

2

Tandem Lab

Accelerator and Source Features:

 $TV_{max} = 10 MV$ Particles: light ions (p, d, ³He, ⁴He) Secondary beams: pulsed neutron beams Polarized beams: p and d

Research examples:

- 1. Few-nucleon dynamics: ²H(n,nnp)
- 2. 2-nucleon transfer reactions relevant to $0\nu\beta\beta$, e.g., A(³He,n)
- Neutron multiplication: $A(n, 2n\gamma)$ 3.
- 4. Detector Characterization (v scattering)
- Nuclear astrophysics 5.
- 6. Applications

Concentrate on neutron physics capabilities

Floor Plan of TUNL (Triangle Universities Nuclear Laboratory)

For neutron energies below $E_n=0.6$ MeV: ⁷Li(p,n)⁷Be For neutron energies below $E_n=4$ MeV: ³H(p,n)³He

For neutron energies above $E_n=4$ MeV: ${}^{2}H(d,n){}^{3}He$

For neutron energies above $E_n=14.5$ MeV and below 35 MeV: ${}^{3}H(d,n){}^{4}He$

DC or pulsed beam operation at 2.5 MHz (i.e., 400 ns between pulses) or factors of 2 in rep rate reduction

Channel Number

 $^{2}H(d,n)^{3}He;$ Q-value = + 3.27 MeV

²³⁸U(n,2n)²³⁷U

Activation and TOF Measurements at TUNL with PT Source

 3 H(p,n) 3 He; Q-value = - 0.763 MeV

$^{3}\mathrm{H}(\mathrm{d,n})^{4}\mathrm{He}$

Q=17.589 MeV

10⁸ n/(cm²s) at 14.1 to 14.8 MeV

10⁵ n/(cm²s) at 30 MeV

DC or pulsed beam operation at 2.5 MHz (i.e., 400 ns between pulses) or factors of 2 in rep rate reduction

Channel Number

 $^{2}H(d,n)^{3}He;$ Q-value = + 3.27 MeV

TUNL: 1 - 20 MeV mono-energetic neutrons

FPY ²³⁵U ²³⁸U ²³⁹Pu

DC or pulsed beam operation at 2.5 MHz (i.e., 400 ns between pulses) or factors of 2 in rep rate reduction

Channel Number

 $^{2}H(d,n)^{3}He;$ Q-value = + 3.27 MeV

NNSA Setup at TUNL

 \Box 4 Clovers + BGO

□ 2 Planars + BGO

 \square 10 keV < E_{γ} < 10 MeV

 $\square 20^0 < \theta_{lab} < 160^0$

 $\Box \varepsilon_{array} = 1.4\%@E_{\gamma} = 1.33 \text{ MeV}$

Total cost of \$1M

Capabilities

 \Box γ - γ coincidence measurements

□ Angular distribution measurements

□ Lifetimes (by Doppler method)

 \Rightarrow Excellent tool for precision neutron induced cross section measurements in the fast neutron energy region (4 \leq E_n \leq 18 MeV)

TUNL

High-Intensity γ-ray Source

How to produce γ rays?

HlγS: Intracavity Compton-Back Scattering

Vladimir Litvinenko

Why do we have a booster synchrotron?

How do we select our γ -ray energy spread?

HlγS: Intracavity Compton-Back Scattering

Vladimir Litvinenko

How do we change the γ -ray energy?

Gamma-ray Energy Tuning Range at HI_γS

Nuclear Resonance Fluorescence (NRF) $(\gamma,\gamma) \& (\gamma,\gamma')$

²⁴⁰Pu: Determination of spin and parity

COSTS

Tandem: \$ 200-250 per hour

HIγS: \$ 950 per hour

PAC

Backup

Tandem: Enge split-pole spectrometer

Hale, S. et al., PRC65 (2002) 015801 Bertone, P. et al., PRC66 (2002) 055804

- Only spectrometer for nuclear astrophysics experiments in North America
- Perform particle transfer and charge-exchange reactions
- Requires recommissioning
 - New DAQ

at CHAPEL HILL

- Upgrade control system
- Repair vacuum system

