

Proudly Operated by Battelle Since 1965

Nuclear Data Needs for γ-γ Coincidence Analysis

M.E. KEILLOR, C.E. AALSETH, A.W. MYERS, S.C. STAVE, T.J. STAVENGER, AND G.A. WARREN

Pacific Northwest National Laboratory, Richland WA 99352, USA PNNL is operated by Battelle for the US Dept. of Energy

PNNL-SA-110636

Outline

PNNL and Our Shallow Underground Laboratory

- CASCADES Germanium Array
- Melusine and the Coincidence Lookup Library

Installing 2nd CASCADES Cryostat

Nuclear Data

Summary and Future Work

PNNL Locations in Washington State

Global Security

Marine Research Operations Sequim, Washington

PSF and the new shallow underground lab

Richland campus

PNNL Shallow Underground Laboratory

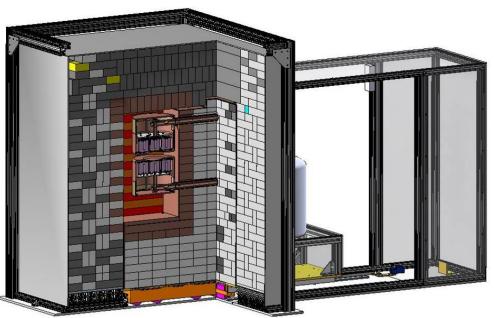
Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965.

Aalseth, C.E., et al. (2012). "A shallow underground laboratory for low-background radiation measurements and materials development." Rev. Sci. Inst. 83(11): 113503.

CASCADES HPGe Array

- 14 crystal HPGe array operating in shallow underground lab at PNNL
 - Two cryostats
 - > 2 crystals in upper cryostat are not operating
- Low-background construction and techniques
 - PNNL electroformed copper cryostats
 - Low-background materials
 - Graded shielding
 - > ~30 m.w.e. overburden
 - Active anti-cosmic veto
 - Radon exclusion system
- Development was funded by DOE Ground-Based Nuclear Explosion Monitoring (GNEM) Program (Leslie Casey)

Crystal installation into 2nd cryostat

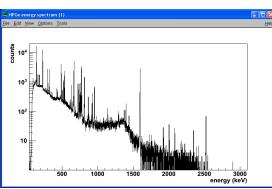

HPGe array in PNNL shallow lab

Technical Approach

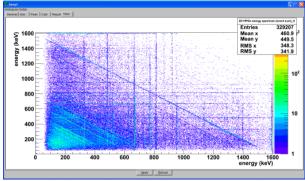
Performance Objectives

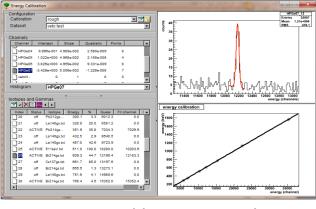
- High Efficiency
- High Selectivity
- Low Background

Sample Types


- Filter Paper
 - Whole sample
 - Archive portion
- Liquid sample after radiochemical dissolution
- Separated / group separated samples or solutions
- Swipes, etc
- International Monitoring System Samples?

Focus areas: nuclear forensics, material assay


"Melusine" Gamma Spectroscopy Analysis Code



- Gamma spectroscopy code to support analysis of data from multi-coincident detector systems, e.g. CASCADES
- Provides typical gamma spectroscopy functionality
 - Energy and shape calibration
 - Detection efficiency calibration
 - Peak search
 - Isotope identification
 - Activity calculations
- Provides additional capabilities for coincidence systems
 - Flexible data reconstruction
 - 1- and 2-D histograms
 - User-defined coincidence, anti-coincidence, energy cuts, etc
- Relies on the Coincidence Lookup Library for coincidence signature intensities

"Singles" and coincidence spectra from thermal irradiation of ²³⁵U

Energy calibration panel

"Melusine" Gamma Spectroscopy Analysis Code

Nuclear data from the CLL drives

Emission probabilities for coincidence signatures are required (along with detection efficiency) to convert measured signal to activity

4 4

branch%

9.33

58.51

17.86

5.61

2.59

1.52

Coincidence summing corrections

20150522_RQM_A_3600

gamma1(keV)

14.41

136.00

121.10

96.70

24.40

136.00

~

HPGe top vs bottom

122.06

264.70

279.50

24.40

279.50

66.10

xMin = 1292.501000 xMax = 1372.501000 vMin = 1133

~

gamma (X axis) = 1332.501 keV gamma (Y axis) = 1173.237 keV efficiency = 20.000 percent

gamma0(keV)

😤 2D signature analysis

configuration Dataset

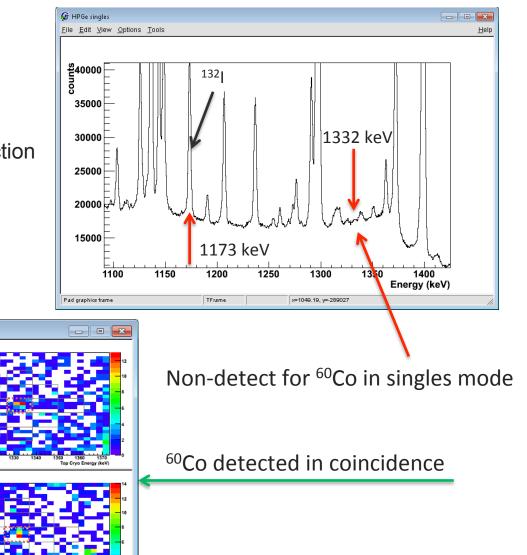
Histogram

signatures isotope

]57_Co

75_Se

75_Se


75_Se

75_Se

75 Se

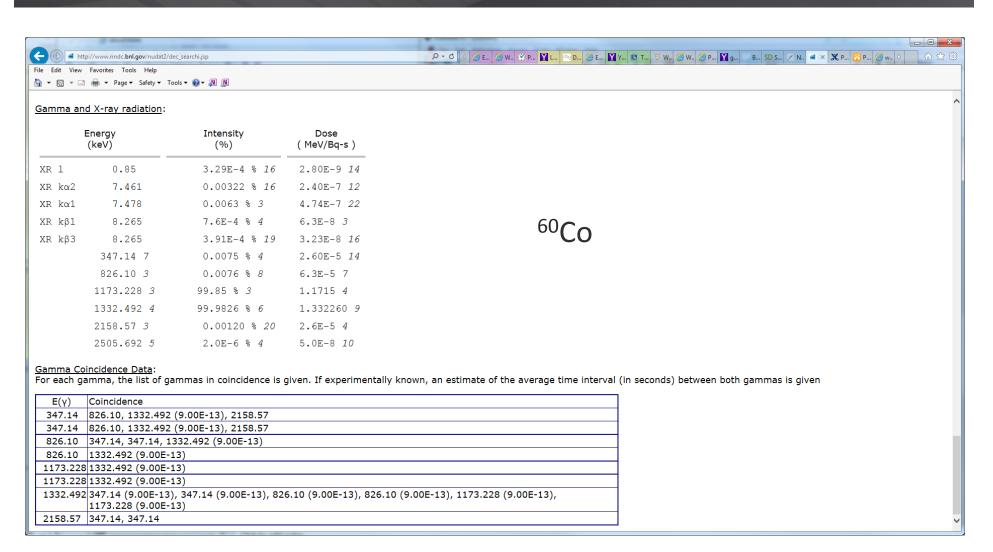
statistics

UPPER TRIANGULAR

Coincidence Lookup Library

➢ The Coincidence Lookup Library (CLL) was developed at PNNL ~ 2004-2006

- Calculates path probabilities based on published decay structures
- Provides conversion coefficients for gammas (from published nuclear data tables)
- > Provides associated β -max (from published nuclear data tables)
- Provides limited x-ray data


😪 Crazy Physics Input - version 1.0.3308.27534																		
File Tools Help																		
Geometry File Name: Speed: 0 Number of Histories: 10000				C On Gamma/Ang.Corelation C On • -1 Gamma • Off C 1 Angular Corelation		Positron © <u>N</u> o © <u>Y</u> es	C <u>T</u> er	se (etaDecay •-Z D+Z	¹⁵⁴ Eu								
	Ncasc%	NCASC	A	Z	IDL	eBeta	eGamma_1	eGamma_2	eGamma_3	eGamma_4	eGamma_5	eGamma_6	eGamma_7	eGamma_8	eGamma_9	eGamma_10	cc_1	cc_2
	3515	35.1483	154	-63	1	0.57137	1.274436	0.123071	0	0	0	0	0	0	0	0	0.00074	1.2
	1337	13.3720		-63	1	0.841107	1.004725	0.123071	0	0	0	0	0	0	0	0	0.00277	1.2
	1072	10.7168		-63	1	0.249341	0.723305	0.87319	0.123071	0	0	0	0	0	0	0	0.00219	0.00373
	1000	9.998	154	-63	1	1.8458286	0.123071	0	0	0	0	0	0	0	0	0	1.2	0
	924	9.24218		-63	1	0.249341	0.723305	0.996262	0	0	0	0	0	0	0	0	0.00219	0.00279
	398	3.98301		-63	1	0.249341	0.591762	1.004725	0.123071	0	0	0	0	0	0	0	0.00329	0.00277
	340	3.40023		-63	1	0.841107	0.756804	0.24793	0.123071	0	0	0	0	0	0	0	0.0052	0.1106
	185	1.85182		-63	1	0.972641	0.87319	0.123071	0	0	0	0	0	0	0	0	0.00373	1.2
	180	1.79702		-63	1	0.249341	1.596495	0.123071	0	0	0	0	0	0	0	0	0	1.2
	160	1.59700		-63	1	0.972641	0.996262	0	0	0	0	0	0	0	0	0	0.00279	0
	101	1.01279		-63	1	0.249341	0.591762	0.756804	0.24793	0.123071	0	0	0	0	0	0	0.00329	0.0052
	87	0.86997		-63	1	0.35176	1.24615	0.24793	0.123071	0	0	0	0	0	0	0	0.00076	0.1106
	70	0.70429		-63	1	0.35176	1.494048	0.123071	0	0	0	0	0	0	0	0	0.00056	1.2
	57	0.56574		-63	1	0.249341	0.904076	0.692425	0.123071	0	0	0	0	0	0	0	0.00138	0.046
	56	0.56372		-63	1	0.57137	0.58201	0.692425	0.123071	0	0	0	0	0	0	0	0.00339	0.046
	48	0.47663		-63	1	0.70511	0.892781	0.24793	0.123071	0	0	0	0	0	0	0	0.00369	0.1106
	44	0.44074		-63	1	1.153413	0.692425	0.123071	0	0	0	0	0	0	0	0	0.046	1.2
	37	0.36830		-63	1	0.308001	0.84539	0.692425	0.123071	0	0	0	0	0	0	0	0.00397	0.046
	28	0.28055		-63	1	0.249341	0.723305	0.625254	0.24793	0.123071	0	0	0	0	0	0	0.00219	0.00799
	25	0.24715		-63	1	0.717264	1.12856	0.123071	0	0	0	0	0	0	0	0	0.00091	1.2
	22	0.21742		-63	1	0.70511	1.140711	0.123071	0	0	0	0	0	0	0	0	0.00211	1.2
	19	0.189962		-63	1	1.597895	0.24793	0.123071	0	0	0	0	0	0	0	0	0.1106	1.2
	17	0.17291	154	-63	1	0.249341	0.904076	0.44449	0.24793	0.123071	0	0	0	0	0	0	0.00138	0.01924
	17	0.17229	154	-63	1	0.57137	0.58201	0.44449	0.24793	0.123071	0	0	0	0	0	0	0.00339	0.01924

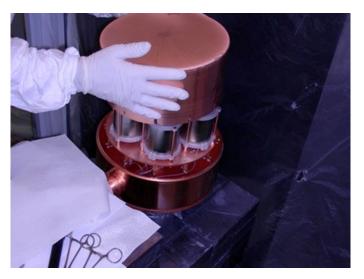
Nuclear Data

- ➤ The CLL uses static nuclear data, e.g. Table of Isotopes, 8th edition (1999)
- The CLL does not provide uncertainty in the signature intensity, or in the conversion coefficient
- > For some isotopes, the CLL does not successfully parse the nuclear data
 - A number of isotopes are not successfully calculated
 - ➢ e.g. ⁵⁵Co, ⁵⁶Co, …
- > We are not aware of published data tables that provide the emission probability for coincident $\gamma-\gamma$, $\gamma-x$, and $\beta-\gamma-\gamma$ signatures
- Monte-Carlo decay simulators are available which also utilize available nuclear data to provide particle generator capabilities
 - SCH2FOR (Laedermann and Decombaz, Appl Radiat Isot, V52, N3, Mar 2000)
 - ➢ G4RadioactiveDecay (Agostinelli *et al*, NIMA 506, 2003)
- Nuclear Data Gaps in the CLL (and elsewhere?)
 - Angular correlation data
 - Conversion coefficients often calculated (often not measured)
 - Missing data

Coincidence Data in NuDat Decay Radiation Search

http://www.nndc.bnl.gov/nudat2/dec_searchi.jsp

Pacific Northwest NATIONAL LABORATORY


Proudly Operated by Battelle Since 1965

Summary and Path Forward

- Laboratory use of multi-crystal γ-γ coincidence systems is increasing
 - CASCADES, Dual Clover, etc
 - Analysis capabilities are typically system-specific, do not use consistent algorithms and nuclear data
- > Future validated $\gamma \gamma$ methods will need
 - Consistent nuclear data
 - Validated algorithms
 - Interlaboratory comparisons
- Near-term focus should be on nuclear data and problem-specific algorithms
 - PNNL is pursuing a collaboration with Dave Brown (BNL) to develop new γ-γ coincidence analysis algorithms and associated nuclear data tables

