

Prompt gamma-ray measurements in ICF experiments

Hans W. Herrmann (LANL) ACS Symposium, San Francisco, CA

Aug 10, 2014

UNCLASSIFIED

ICF Gamma Ray Physics

a LANL-led collaboration across multiple institutions Acknowledgements:

Y.H. Kim, M. Schmitt, N.M. Hoffman, C.S. Young, J.M. Mack, D.C. Wilson, S.E. Caldwell, J. Oertel, F. Lopez, V. Fatherly, J. Jorgenson, A. Hayes-Sterbenz, G. Hale, S.H. Batha

C.J. Horsfield, M. Rubery, S. Gales, A. Leatherland, W. Garbett

T. Hilsabeck. J. Kilkenny

J. Milnes, J. Howorth

W. Stoeffl, J.A. Church, L. Bernstein,

- D. Sayre, J. Liebman, A.C. Carpenter,
 - D. Casey, C. Cerjan, D. Schneider,
- D. Fortner, A. Mackinnon & the NIF Team

Lawrence Livermore National Laboratory

A. Zylstra, M. Gatu-Johnson, A. J. Frenje, R. Petrasso

V. Glebov, W. Shmayda, D. Jacobs-Perkins

E.K. Miller, R. Malone, M. Kauffman

National Security Technologies

UNCLASSIFIED

Outline

- Intro to Gas Cherenkov Detectors (GCD)
- Gamma Reaction History
- Future Gamma Diagnostics

UNCLASSIFIED

Gamma-rays provide the most un-perturbed nuclear signature of ICF performance

Gas Cherenkov Detectors (GCD) convert MeV gammas to UV/Visible for easy detection

GCD Animation

Gamma Ray Diagnostic capability at OMEGA & NIF

NIF

- 3 GCDs (20cm), 1 GRH (187cm)
 - Coax (40ft) & Mach Zehnders
 - Only GRH absolutely timed

4 GRHs (607 cm)
 Mach Zehnders only (160 ft)
 All absolutely timed

UNCLASSIFIED

Gamma Reaction History (GRH) is optimized to operate outside target chamber.

Single-channel GRH prototype performance demonstrated at OMEGA (U. of Rochester) in 2009

NIF has produced Interesting Direct-Drive Reaction Histories

DT γ-ray Spectrum consists of 2 prominent lines $D + T \rightarrow {}^{5}He^{*} \rightarrow {}^{4}He (3.5 \text{ MeV}) + n (14.1 \text{ MeV})$ \rightarrow ⁵He + γ_0 (16.75 MeV) \rightarrow ⁵He^{*} + γ_1 (~13.5 MeV) $\gamma_1/\gamma_0 \approx 2.9$ 0.8 Ŷο determined 16.75 MeV Intensity (a. u.) experimentally* 0.6 0.4 γ₁ 0.2 γ1 ~3.5 MeV 0 0 5 10 15 20 Gamma-Ray Energy (MeV) 0 MeV * Courtesy C.J. Horsfield (AWE), -0.85 MeV ⁵He assuming lines shapes offered by ⁴He + n R-Matrix analysis (G. Hale, LANL) UNCLASSIFIED

GCD & GRH have provided great HED & Burn Physics results at OMEGA

Accomplished:

- DT Branching Ratio = (4.2±2)e-5 γ/n
- Characterization of other fusion gammas (D³He, HT, T₂, T₃He, ³He³He, HD,...)
- (n,n') gammas from pucks of various materials → ablator areal density of CH & SiO2 implosions

In Progress:

- Kinetic Plasma Effects
 - Fuel Ion Segregation
 - Knudsen Reactivity Reduction
 - Transport validation (mass, momentum, energy)
- Charged-Particle Stopping Power
- Charged-Particle induced gammas for Mix diagnosis

D-T gamma-to-neutron branching ratio determined from inertial confinement fusion plasmas^{a)}

Slide 12

UNCLASSIFIED

The Prompt γ-Ray Energy Spectrum from Indirect-Drive, Cryo-Layered Implosions is full of information!

GRH isolates DT fusion and ¹²C(n,n') γ-rays

- EST. 1943 ------

14 MeV neutron-induced γ-Rays from CH Capsule & Hohlraum assembly are simulated in MCNP

Gaussian forward fit decomposition into spectral components provides Total DT & ${}^{12}C(n,n'\gamma)$ yields and absolute timing (BT, BW, $t_{C\gamma}$)

Indirect Drive: DT Symcap produces discernible "Re-Shock flash", Cryo-layered implosions do not

Future gamma diagnostics will add significant capability

Gas Cherenkov Detectors (temporal detectors):

Slide 18

UNCLASSIFIED

"Super" GCD (GCD-3 at Ω) provides High-Sensitivity, Low-Threshold capability now at OMEGA and eventually at NIF

"Super" GCD

- Low Threshold, High Sensitivity
 ~2 MeV threshold
 - > 20 cm from TCC (TIM mounted)

Physics Driven Requirements:

- Low Threshold (≤2 MeV) to reveal new portions of gamma-ray spectrum
 - ➢ High pressure (400 psia) → redesigned pressure boundary
 - ➢ Fluorinated gases → metal seals to achieve <1e-9 scc/s leak rate to avoid damage to TRS catalyst
- High Sensitivity
 - TIM-based to capture solid angle
 - Modular optics package to optimize SNR
- Absolute Timing & Dry Run capability
 - $> 2\omega$ fidu injection
- Improved SNR
 - better shielding
 - additional precursor to signal delay

UNCLASSIFIED

Lower Energy Threshold (~ 2 MeV) opens up new portions of gamma-ray study

 New gamma-ray detection (too low E for GCD-1, too dim for GRH):

 ${\succ}^{16}O(n,n'\gamma)$ at **6.1 MeV** (SiO_2 $\rho R)$

 $>^{13}C(d_{ko},n)^{14}N^*$ at **5.69 MeV** (CH Mix)

>⁹Be(α ,n)¹²C* at **4.44 MeV** (Be Mix)

>⁹Be(d_{ko},n)¹⁰B* **3.4 MeV** (Be Mix)

>¹⁰B(d_{ko},n)¹¹C* at ~7 MeV (B₄C or BH Mix)

>HD-γ at 5.5 MeV (MIT Zylstra PhD)

UNCLASSIFIED

The p+D reaction relevant to BBN, formation of proto stars, and brown dwarfs, is being investigated at OMEGA in July-August

A. Zylstra (PhD thesis) Brown Dwarf Stars Protostars

Keck Telescope

LANL's new GCD-3 uniquely identified HD fusion gammas at 5.5 MeV for the first time (as well as $D^{3}He-\gamma \& D_{2}-\gamma$)

Integral puck holder allows study of 14 MeV neutron interactions with materials placed near implosion

Gamma Rays may illuminate "Dark Mix"

¹²C vs ¹³C pucks at OMEGA will determine feasibility

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 23

Future gamma diagnostics will add significant capability

- Spectroscopic detectors:
 - Gamma-to-Electron Magnetic Spectrometer (GEMS)

Gamma Spectroscopy will be an enabling technology for NIF

Detector _____ Array (Cherenkov to PMT)

Analyzing

Electro-Magnet

e⁻ Graphite Collimator

GEMS (Gamma-to-Electron Magnetic Spectrometer)

- Total Yield (no Total Yield measurement currently exists!) $D(t,\gamma_0)$
- Total Down Scatter Fraction (TDSF) when combined w/ primary Y_n
- 4π Global Fuel ρR (Fuel ρR currently line-of-sight) D(n,γ)
- Ablator ρR (reduced uncertainty relative to GRH) ¹²C(n,n'γ)
- Mix studies (e.g., ${}^{9}\text{Be}(\alpha,n\gamma)$, ${}^{13}\text{C}(d_{ko},n\gamma)$, ${}^{11}\text{B}(d_{ko},n\gamma)$)
- Neutron Interactions on materials (i.e., pucks)
- Astrophysical studies (e.g., s & r-processes)

High Resolution Mode (Goal)

Exploding pusher can be used to extract ${}^{12}C(n,\gamma)$ and $D(n,\gamma)$ from Ignition Capsule

D+T

Be

100

Hydro-dynamical Mixing of Ablator into Hotspot

⁹Be(α, nγ)¹²C gamma-rays (4.44 MeV)

HS Radius (µm)	0.1 µg ºBe in HS	1 μg ºBe in HS
10	1.2x10 ⁻⁴	1.2x10-³ γ/n
20	3.0x10 ⁻⁵	3.0x10 ⁻⁴
30	1.35x10-5	1.35x10-4

HS Radius (µm)	0.1 µg 10B in HS	1 μg 10B in HS
25	1.34x10 ⁻⁵	1.34x10 ⁻⁴

Compare w/ 1.2x10⁻³ γ/n at 100 mg/cm² ¹²C

UNCLASSIFIED

D+T

Aerogel Cherenkov Detector (ACD) proposed for lowenergy (0.2-2.5 MeV), course spectroscopy

Radiator:	Aerogel-1	Aerogel-2	Aerogel-3	Aerogel-4	Aerogel-5	water	quartz
Refractive index, n:	1.015	1.03	1.05	1.07	1.12	1.33	1.5
Threshold Energy (Me	eV): 2.47	1.62	1.16	0.93	0.62	0.26	0.17

UNCLASSIFIED

Slide 28

Options for Future Gamma Diagnostics (cont.)

- Spectroscopic detectors:
 - Curved Crystal Gamma Spec (W.Stoeffl)
 - useful for <1.5 MeV</p>
 - "Furlong" (W.Stoeffl)
 - Single-hit, pixelated scintillator detector array
 - ~200m from TCC

Gamma Imaging System (GIS)

Imaging of ¹²C(n,n')γ would reveal ablator mass distribution at bang time

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 30

GRH boldly goes...

courtesy Scott Chambliss, Paramount Pictures and Bad Robot Productions

Operat

Backups

UNCLASSIFIED

GRH continues to inform quest for Ignition at NIF

- ~500ps late BT indicative of reduced coupling → Drive Multipliers (~85%)
 - Scatter of nBT relative to GBT indicative of core velocity
- Wide GBW indicative of failure modes during NIC
- Large & late ¹²Cγ peak indicative of improper stagnation
- Future: ¹²C layers in ¹³C capsules for Dark Mix studies

NIF Yield Ranges for Gamma Diagnostics

UNCLASSIFIED

