Enhanced ion heating in short-pulse laser-driven buried-layers for NEET/NEEC

T.E. Cowan^{1,2}, **Lingen Huang¹**, T. Kluge¹, M. Bussmann¹ ¹Helmholtz-Zentrum Dresden-Rossendorf, ²Technische Universität Dresden

In collaboration with

L. Bernstein, A. Kritcher, R. Shepherd Lawrence Livermore National Laboratory

> Y. Sentoku University of Nevada, Reno

Markus Roth Technical Unviersity Darmstadt, and GSI-Darmstadt

Nuclear Fusion: From NIF to the Stars 2014 ACS National Meeting San Francisco, 11 August 2014

HZD

Enhanced ion heating for NEET/NEEC

Motivation

- NEET/NEEC in high rep-rate short-pulse laser experiments
- **CONCEPT:** Enhanced heating in buried layers Y. Sentoku et al, Phys. Plasmas **14**, 122701 (2007)

Systematic study of enhanced ion heating

- Full solid density, self-consistent ionization, no numerical heating...
- Parameter dependence of energy transfer and ion heating at high laser intensity
 - L. Huang et al, Phys. Plasmas 20, 093109 (2013)

Future work

- Simulation of optimized, high Z layers
- Characterization with XFEL at HIBEF

NEEC/NEET with Short Pulse Laser

- ¹⁶⁹Tm NEET/NEEC with 150 TW DRACO laser @ HZDR (4 J/30 fs/10 Hz)
- Isochoric heating to keV temperatures (Sentoku et al, PoP 14, 122701, 2007)
- Streaked spectroscopy at 8.4 keV
 - \rightarrow discriminate 4.1 ns nuclear decay from few-ps plasma emission

NIF to Stars, ACS, San Francisco, 10.08.2014

Page 3

Concept: isochoric heating in buried layers

"Isochoric heating in heterogenous solid targets with ultrashort laser pulses," Sentoku, Kemp, Presura, Bakeman and Cowan, Phys. Plasmas **14**, 122701 (2007)

- Electron pressure-gradient-driven pusher calculated at 20 n_{cr}
- CD2 chosen, in order to use D-D fusion neutrons as ion diagnostic

Page 4 NIF to Stars, ACS, San Francisco, <u>10.08.2014</u>

T.E. Cowan | Helmholtz International Beamline for Extreme Fields (HIBEF) at European XFEL | www.hzdr.de/hgfbeamline

DRESDEN concept

Concept: isochoric heating in buried layers

"Isochoric heating in heterogenous solid targets with ultrashort laser pulses," Y. Sentoku, A. Kemp, R. Presura, M. Bakeman, T.E. Cowan, Phys. Plasmas **14**, 122701 (2007)

Predicted Excitation Rates in ¹⁶⁹Tm

G. Gosselin, CEA

M. Chen/A. Kritcher, LLNL 8 10⁶ CEA AA LLNL AA LLNL STA

- kT ~ 1-2 keV,
- solid density ~ 9.3 g/cm³
- Peak Excitation rate ~7.10⁷ /s

Mitglied der Helmholtz-Gemeinschaft

Page 6 NIF to Stars, ACS, San Francisco, 10.08.2014

Signal rate predicted in short-pulse NEEC/NEET experiment

- Short-pulse separates excitation from decay
- High Repetition rate allows signal averaging & systematics
- ightarrow Verify excitation rates, and

resolve unknowns (e.g., Lifetime vs. Plasma Temperature)

- High-rep-rate 150 TW laser "Draco" at HZDR
- tamped targets short-pulse isochoric heating
- large collection HOPG
- Fast X-ray streak, few ps (plasma emission)
- Slow X-ray streak, few ns (nuclear decay)

The half-life is predicted to decrease to 30 ps!

Enhanced ion heating for NEET/NEEC

Motivation

- NEET/NEEC in high rep-rate short-pulse laser experiments
- **CONCEPT:** Enhanced heating in buried layers Y. Sentoku et al, Phys. Plasmas **14**, 122701 (2007)

Systematic study of enhanced ion heating

- Full solid density, self-consistent ionization, no numerical heating...
- Parameter dependence of energy transfer and ion heating at high laser intensity
 - L. Huang et al, Phys. Plasmas 20, 093109 (2013)

Future work

- Simulation of optimized, high Z layers
- Characterization with XFEL at HIBEF

Particle in Cell simulation parameters

Laser parameters

τ _{FWHM} [fs]	<i>I</i> ₀ [W/cm ²]				
	2×10 ¹⁹	5×10 ¹⁹	1×10 ²⁰	2.8×10 ²⁰	5×10 ²⁰
500	3 J	7.5 J	15 J	42 J	75 J
400	2.4 J	6 J	12 J	-	60 J
300	1.8 J	4.5 J	9 J	-	45 J
200	1.2 J	3 J	6 J	-	30 J
100	0.6 J	1.5 J	3 J	-	15 J

Target configuration

Numerical parameters

- $\omega_{\text{plasma}} \Delta t \approx 1.2 < 2$
- $N_x \times N_y = 9000 \times 4500$ $\Delta x \times \Delta y = \lambda_0 / 150 \times \lambda_0 / 150$ $\Delta t = \Delta x / c$ (Directional splitting)
 - Deuteron / Carbon / Aluminum ion number per cell : 24 / 12 /18
- maximum macro particle number : ~ 0.5 × 10⁹
- interpolation order : 4

Page 9 NIF to Stars, ACS, San Francisco, 10.08.2014 macro particle per real particle : ~ 1000

Laser generated fast electrons propagate into target

NIF to Stars, ACS, San Francisco, 10.08.2014

Net return current

Temporal evolution of bulk electron temperature

Ionization evolution: creates more free electrons

Internal expansion driven by electron pressure gradient driven 40

lon collective motion driven by the internal electrostatic field

Enhanced **ion** heating by the internal expansion

Internal expansion region: ion beam kinetic energy transferred to ion thermal temperature \rightarrow enhanced ion heating

Page 18 NIF to Stars, ACS, San Francisco, 10.08.2014

T.E. Cowan | Helmholtz International Beamline for Extreme Fields (HIBEF) at European XFEL | www.hzdr.de/hgfbeamline

Scaling of deuterium thermal temperature in the expansion region

Page 19 NIF to Stars, ACS, San Francisco, 10.08.2014

Scaling of deuterium beam kinetic energy in the expansion region

NIF to Stars, ACS, San Francisco, 10.08.2014

T.E. Cowan | Helmholtz International Beamline for Extreme Fields (HIBEF) at European XFEL

www.hzdr.de/hgfbeamline

()

Scaling of **ion** heating – fractional energy transfer rate, R(t) from directed ion kinetic energy to transverse, thermal energy

www.hzdr.de/hgfbeamline

Enhanced ion heating for NEET/NEEC

Summary

- Numerical stable (!) simulations of buried layer heating at solid-density (!)
- Self-consistent treatment of electron return current, collisional ionization and bulk electron heating, and collisional ion heating
- Dense plasma pusher directed ion acceleration
- Collisional ion energy transfer to thermal motion
- Up to keV temperatures predicted (2D, but not optimized)
- Energy transfer rate decreases with increasing laser intensity (roughly consistent with ion collision frequency)
- Buried layer ion heating *might* be able to reach NEET/NEEC relevant conditions

Mitglied der Helmholtz-Gemeinschaft

Page 22 NIF to Stars, ACS, San Francisco, 10.08.2014

Enhanced ion heating for NEET/NEEC

Future work

- Optimize layer thickness and elemental composition
- Extend to high Z, relevant for NEET/NEEC nuclides
- Use DD neutron yield to verify ion heating
- Use neutron energy versus angle to determine DD-beam fusion (shift), from thermal fusion (broadening).
- Combine NEET/NEEC with XFEL probing (coherent diffraction imaging, Thomson scattering), to simultaneously determine ion density and temperature
 - -- Example, HIBEF at European XFEL

Thank you for your attention....

