
LLNL-PRES-657003 
This work was performed under the auspices of the U.S. Department  
of Energy by Lawrence Livermore National Laboratory under contract  
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC 

Charles Cerjan 
ACS 248th National Meeting 

Division of Nuclear Chemistry and Technology 

August 11, 2014 



Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 
2 

 Brief review of implosion diagnostic capabilities. 

— Necessary for experimental design and analysis. 

 Selective summary of the stagnation conditions achieved to date. 
— NIC (“low foot”) implosions 

— Symcap “buried CD layer” implosions 
– Recent development of Xe-doped capsules as a prototype in 

Symcaps. 

— Recent “high foot”, higher yield implosions. 

 HYDRA radiation-hydrodynamic modeling capabilities with Monte Carlo 
transport. 

— Necessary for experimental design and analysis. 

 Alternate ablator choices (HDC, Be), shell configurations (double shells, 
high-Z shells) or drives (direct drive, indirect drive exploding pushers) 
require further platform development and will not be discussed. 

2 
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Examine possible near-term nuclear physics based NIF experiments 
using low-cost platforms with demonstrated performance. 

 Dopant implantation in a capsule 

— Low adiabat (“low foot”) NIC have high fuel areal density but 
are more sensitive to dopants (~1014 dopant atoms at fuel 
interface). 
– Significant yield and stagnation conditions variability. 

— Symmetry Capsules (SymCaps) have lower convergence ratio, 
low fuel areal density but much less restrictive dopant limits (~ 
1016 atoms). 
– Small experimental variability in stagnation conditions. 

— High adiabat compression (“high foot”) provides moderate 
compression and fuel areal density. 
– Small experimental variability in stagnation conditions. 
 

3 

NIF nuclear physics experiments will feature integrated 
physical effects thus will require integrated diagnostic  

capabilities and analysis. 



Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 
4 

Examine possible near-term nuclear physics based NIF experiments 
using low-cost platforms with demonstrated performance. 

 Activation at the hohlraum wall or at greater distances. 

— In principle, greatly reduces fielding and development effort. 

— Balance lower neutron flux with larger material mass. 

— Solid Radchem Diagnostic (SRC) is currently a NIF diagnostic 
complementary to 12C-γ GRH detection (CH ρr). 

— Multiple material foil capability demonstrated (TOAD). 

— Thulium (n,3n) and rising edge nTOF signals for “RIF” 
(Reactions In Flight) or tertiary neutron spectrum for stopping 
power model tests (Coulomb logarithm). 

4 
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NITOF (90-315) 
NIS 

nTOF20m-SpecE (90-174) 

nTOF20m-SpecA 

hGXD (000-000) 
Ross Pair Filters 

ARIANE (090-089) 

hGXD (090-078) 
Ross Pair Filters 

SPBT Monochromater (000-180) 

SpecSP (161-056) 

SPIDER 

19 Flange NAD foils fielded 
SRC foils mounted on DIMs 

GRH (6m from TCC) 
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Author Charles Yeamans 6 

Neutron time-of-flight detectors are located at 090-176 (SpecE), 116-316 
(SpecA), and 161-056 (SpecSP);  the MRS detector location is 077-324. 

● Flange-NAD 
○ other neutron diagnostics 
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P0 = 35.6 um 
P2/P0 = -31% 

P0 = 60.7 um 
P2/P0 = -3% 
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Polar View (000-000) Equatorial View (090-078) 

Ross Pair filter subtraction: 11 – 20 keV  
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Figures from T. Dittrich et al. Phys. Rev. Lett. 112,055002(2014). 

Use the NIC capsule. 
Introduce a larger first pulse and 

compress the overall drive. 
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Plot courtesy of Pravesh Patel 

The high foot laser drive 
sacrifices compressibility 
for yield compared to the 
low foot laser drive. 
 
This drive produces 
consistently smaller  
fuel densities but higher 
ion temperatures. 



Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 
11 

11 

  

N120923 N120923 
sim 

N130503 N130503 
sim 

N130505 N130505 
sim 

N130507 N130507 
sim 

Yn 6.7e14 7.16e14 5.1e14 5.48e14 8.0e14 1.01e15 7.3e14 1.17e15 

DT Ti 
(keV) 

3.3 3.23 4.62 4.83 2.72 2.92 2.81 2.94 

DD Yn 7.53e12 8.14e12 1.54e12 1.84e12 3e12 4.05e12 2.82e12 4.28e12 

DD Ti 
(keV) 

3.12 3.05 4.19 4.34 2.45 2.73 2.36 2.76 

DT ρr 
(mg/cm2) 

75.7 13.2 87.5 98.2 

C ρr 
(mg/cm2) 

485 28.5 460 495 

Reasonable agreement between experiment and HYDRA. 
 (simulations courtesy of S. Weber). 
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 Xe-doped SymCap experiments ready to be fielded in FY14/FY15. 

— Buried CD layer SymCap campaign displays < 20% variability 
and reasonable agreement with HYDRA simulations. 
– Use this well-understood platform for the first 

radiochemical activation experiments. 

— Two regions of a CH/Si SymCap have been doped with 136Xe 
(outer region) and 124Xe (inner region) by GA and S. Kucheyev 
(LLNL). 

— In-line radiochemical simulations in HYDRA predict a small 
ratio of the (n,2n) activation products 135Xe/123Xe due to 
ablative stabilization.  
– First experimental test of this prediction. 
– Demonstration of RAGS capability with neutral atom AMS 

detection. 

1
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Layer Thick 
(µm)  

Cumul. 
thick (µm) 

rlayer (µm) 
 

dopant  

1 (in) 20±2 20 20 0% Si 

2 6±2 26 6 Si 1±0.2 at. % 

3 35±2 45 19 Si 2±0.2 at. % 

45 implant Xe124  2x1014 atoms 

61 16 Si 2±0.2 at. % 

4 10±2 71 10 Si 1±0.2 at. % 

5 
(out) 

139.8 

134 63 

134 implant Xe136  2x1014 atoms 

211 77  0% Si 

50:50 DT 
8.29 mg/cc at 32K 

2x1014 atoms 
of 136Xe 

2x1014 atoms 
of 124Xe 

 Use 1.3 MJ, 360TW laser energy 
 Expected Yn ~ 7x1014 neutrons for a 

Symcap shot (e.g. N130507) 
 Measure isotope products from the 

interactions of: 
124Xe + n → 123Xe + 2n 
136Xe + n → 135Xe + 2n 

 The goals of this diagnostic technique 
are to measure: 
− Differential ablator penetration into 

the fuel 
− Location of the ablator region that 

penetrates into the fuel 

 At this low dopant level, there is no 
issue with implosion performance 
− Should not affect the diag 

signature 
− Non-perturbative 
−  No seeding RT on its own 
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 High foot laser drive with a conventional CH ablator capsule represents 
an improvement upon the performance of the Symcap platform. 

— Stable, repeatable platform with ~5 x 1015 neutrons in 150 ps. 
— Higher doping levels possible (?). 
— Dopant loading during fabrication must be demonstrated. 

 High energy neutron spectrum (> 14 MeV) 
— Reaction-In-Flight (RIF) neutrons populate this energy range. 
— Stopping power experiments require larger neutron yields to reduce 

experimental uncertainties. 

 Thermalization neutron spectrum (< 1 MeV) 
— Larger DT areal densities required to produce sufficient low-energy 

signal. 
— SRC diagnostic  probes this energy range and provides late-time ablator 

areal density and remaining shell temperature dependence. 
— Low Energy Neutron Spectrometer (LENS) would be very desirable. 

1
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 All four shots were roughly similar for the burn-averaged quantities. 
N130927 

(exp) 
N130927 

(fit) 
N131119 

(exp) 
N131119 

(fit) 
N131219 

(exp) 
N131219 

(fit) 
 

N140304 
(exp) 

N140304 
(fit) 

ρr  (g/cm2) 0.720 0.700 0.760 0.680 0.800 0.780 0.760 0.780 

Y (total)* 5.10e15 5.10e15 6.31e15 6.13e15 3.57e15 3.53e15 9.43e15 9.54e15 

Tntof (keV) 4.60 4.68 5.00 5.02 5.10 5.09 6.35 6.21 

Tbw (keV) 4.80 5.13 5.32 6.48 

tburn (ps) 187/161 160 152/156 155 148/135 140 168/128 160 

ρbn (g/cm3) 38 30 32 26 

P (Gb) 132 112 115 116 

*Y(total)  = Y(13-15)*exp(4.0*DSR) 
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Total yield = 7.4 x 1015 

Thermalization peak at 300 eV 
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Total yield = 7.4 x 1015 

Energetically up-scattered D,T 
fusion reactions 
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Total yield = 2.5 x 1013 
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Total 12C-γ yield = 2.0 x 1013 
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 The primary implosion experiment simulation tool used for NIF experimental 
design and analysis. 
• ALE (Adaptive Lagrange-Euler) 
• Finite element based (quadrilateral  in 2D or hexahedral elements in 3D) 
• Massively parallel 
• PYTHON user scripts may be readily linked. 

 Physics capabilities are extensive. 
• Consistent numerical treatment of the hydrodynamic equations, diffusive 

radiation transport, and diffusive electron conduction. 
• Substantial flexibility exists for different EOS and conductivity model 

choices. 
• Implicit Monte Carlo photon transport. 
• Particle Monte Carlo neutron, charged particle, and gamma-ray generation 

and transport. 
• In-line or post-processing radiochemistry available (KUDU). 

 A static three-dimensional model exists that correlates implosion diagnostics 
and quantifies the stagnation properties. 
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 Proton Time-of-Flight (pTOF) 
• Fielded and analyzed by Hans Rinderknecht/MIT. 
• Shock flash bang time in D/3He gas fills. 

 Wedge Range Filters (WRF) 
• Fielded and analyzed by Alex Zylstra/MIT 
• Capsule areal density at shock flash bang time in D/3He gas fills. 

 Both techniques probe charged particle stopping 
power. 
• Both are limited to low areal densities currently. 
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Nuclear Physics 
 L. Bernstein, R. Bionta, D. Bleuel, J. Caggiano, D. Casey, D. Fittinghoff, 
 G. Grim (LANL), R. Hatarik, H. Herrmann (LANL), J. Knauer (LLE),  
 F. Merrill (LANL), D. Sayre,  D. Shaughnessy,  W. Stoeffl,  
 A. Tonchev, C. Yeamans 
  
X-ray Physics 
 R. Benedetti, N. Izumi, S. Khan, T. Ma, A. Pak, P. Patel 
 
HYDRA 
 M. Marinak, M. Patel, S. Sepke 
 
Thanks to H. Robey for useful comments on this presentation. 



BACKUP 
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 Indirect drive assumed throughout this discussion. 
 Temporally and spatially shaped laser deposition onto hohlraum wall 

produces temporally and spatially varying x-ray drive. 

 Ablator mass is ejected; shocks form and propagate; isentropic 
condition at peak implosion velocity on a low adiabat. 

 Transfer of incoming shell kinetic energy to PdV work on the 
capsule interior which leads to temperatures sufficiently large to 
initiate fusion reactions. 

 Temperature rise also leads to pronounced increase in energy 
losses due to Bremsstrahlung and electron conduction. 

 Balance between energy production (fusion reactions) and loss 
mechanisms characterizes the implosion performance. 
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Layer Thickness 
(um)  

Si dopant  
(at%) 

Cryo density 
(g/cc) 

1 (inside) 6±2 Nominally 0, 
req’t <0.1 

1.049 

2 6±2 1±0.2 1.074 

3 35±2 2±0.2 1.099 

4 10±2 1±0.2 
 

1.074 

5 (outside) (balance) Nominally 0, 
req’t <0.05 

1.049 

Inner CH radius = 935 (± n/a) um 
Outer radius = 1130 ± 5 um 
Wall  195 ± 3 um 
CH density(cryo) = 1.034 +0.025*Si% +0.029*Ox% 
Densities below assume 0.5 at% oxygen 
Thermal contraction taken to be 1/1.0127 

Fuel layer 
69 microns 

Gas density  
set 1.5 K below 
triple point 
(0.3 mg/cc for DT,  
varies for other 
compositions)  



CH(Si) Symcap  Design v3.2 (from Haan 7/1/11, densities updated 9/13/11) 
(all dimensions and densities at cryogenic temp) 

 

Layer Thickness 
(um)  

Si dopant 
(at%) 

Estimated 
density (g/cc) 

1 (inside) 20±2 Nom. 0, 
req’t <0.1 
 

1.049 
 

2 6±2 1±0.2 1.074 

3 35±2 2±0.2 1.099 

4 10±2 1±0.2 
 

1.074 

5 (outside) (balance) Nom. 0, 
req’t <0.05 

1.049 

Inner radius = 928 (± n/a) um 
Outer radius = 1137 ± 5 um 
Wall  209 ± 3 um 
CH density(cryo) = 1.034 +0.025*Si% +0.029*Ox% 
Densities below assume 0.5 at% oxygen 
Thermal contraction assumed to be 1/1.0127 

Gas nominally 
 6.62 mg/cc 
70:30 (at.) 3He:D  
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Areal density effects are 
pronounced in the low  

energy region. 
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Virtual Campaign 28 8/10/2014 

Hot core 

Ablated CH 

Compressed CH 

DT Fuel 

The pressure, density and temperature 
are deduced from an isobaric model 

fit to the x-ray and nuclear data. 
Input from experiment 
  - X-ray Images: equator and pole 
  - Burn history:  x-ray or GRH 
  - Neutron time of Flight (NTOF) trace 
  - Yield (13-15 MeV) 
  - DSR 

Derived parameters 
  - Volume 
  - Hot core Energy (PV) 
  - Hot core density 
  - Neutron images 
  - Directional neutron spectra 

Density distribution 

Phs, ρ(r,θ,ϕ), T(r,θ,ϕ)  
 

χ2 fit 

Output 
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 Hot core pressure (not experimentally accessible) is a 
useful measure of implosion performance. 

 PdV work on the DT gas and fuel matches alpha-particle 
energy deposition. 

Experimental or known quantities 

Q  Yn
3
2

PV
 1      

PGb  2  1019 Yn T2

Vn vT
.      
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